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Abstract

This article presents a complete proof of Mnëv’s Universality Theorem and and
a first complete proof of Mnëv’s Universal Partition Theorem for oriented matroids.
The Universality Theorem states that, for every primary semialgebraic set V there
is an oriented matroid M, whose realization space is stably equivalent to V . The
Universal Partition Theorem states that, for every partition V of IRn induced by
m polynomial functions f1, . . . , fm with integer coefficients there is a correspond-
ing family of oriented matroids (Mσ)σ∈{−1,0,+1}m such that the collection of their
realization spaces is stably equivalent to the family V.

1 Introduction

Oriented matroids (also known as combinatorial geometries) form a combinatorial model
for point configurations in linear vector spaces. The oriented matroid M(P ) of a (linear)
point configuration P = (p1, . . . ,pn) in IRd is a list of all the partitions of points in P

induced by linear hyperplanes in IRd. The realization space of the oriented matroid M(P )
is the space of all point configurations P ′ in IRd that generate the same partitions as P

does. In particular, oriented matroids contain complete information about the incidence
structure of P (i.e. information about which point sets in P are linearly dependent). One
can as well describe oriented matroids on the level of (signed) affine point configurations
and partitions by affine hyperplanes. For a broad introduction to the theory of oriented
matroids see [1] and [2].

One of the most prominent and surprising facts of oriented matroid theory is Mnëv’s
Universality Theorem [4, 5]. It states that the realization spaces of oriented matroids can
become arbitrarily complicated. More precisely:

For every primary semialgebraic set V defined over ZZ there is an oriented
matroid M , whose realization space is stably equivalent to V .

The key idea behind the proof is to encode an arbitrary system of polynomial equations
and strict inequalities E into the geometry of a point configuration P (E) (the space of
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solutions V (E) of E is a primary semialgebraic set). This can be done in principle by
the use of the classical von Staudt constructions of projective geometry. The different
solutions of E correspond then to (classes of) different realizations of M(P (E))). The
main problem that occurs in such a kind of construction is to arrange the configuration
in a way such that the combinatorial structure is stable for all possible solutions of E .

Mnëv’s original proof is very technical and complicated. It consists of an algebraic part,
that models the computation of the system E by elemtentrary operations. The “space
of computations” of a given system of polynomials is subdivided into certain strata Ξi.
Each stratum represents a set of computations in which the total orders of results of
sub-computations are fixed. A tricky perturbation technique is used to show that one can
arrange the computation in a way such that there is a stratum Ξ that is already equivalent
to V (E). After this, von Staudt constructions are used to encode this into a geometric
configuration. The control in the total order of intermediate results translates to the
control of the oriented matroid of the point configuration. The values of the variables are
encoded by the positions of points on a line ` with respect to a projective scale given by
the position of points 0, 1 and ∞ on `.

Much clarification was achieved by an alternative proof of Shor. A sketch of this
proof is given in [7]. Shor replaced the algebraic part of Mnëv’s proof by a normal form
algorithm:

Every primary semialgebraic set V over ZZ is stably equivalent to a semialge-
braic set V ′ ∈ IRn whose variables 1 = x1 < x2 < . . . < xn are totally ordered
and for which all defining equations have the form xi + xj = xk or xi · xj = xk

for certain 1 ≤ i ≤ j < k ≤ n.

This normal form is achieved by certain replacement rules. The problem there is to choose
the replacement rules in a way that preserves the algebraic structure of the solution space
and successively creates a total order on all variables that are involved.

It is one of the scopes of this paper is to give an even simpler proof of Mnëv’s Univer-
sality Thoerem. In our proof, we also aim for a normal form in which the variables are
strictly totally ordered. However, the elementary operations that occur are quadrilateral

set relations rather than additions and multiplications. The values of the variables are
retrieved by interpreting them with respect to individual projective scales, one scale for
each variable and one scale for each elementary operation. By this the total ordering of
the variables can be achieved by lining up the different projective scales one after the
other as clusters of points on a line. The different scales are linked by quadrilateral set
relations.

As a second scope of this paper, this construction provides a proof of an even stronger
theorem: The Universal Partition Theorem as it was originally stated by Mnëv in [6].
While the Universality Theorem is concerned with a single primary semialgebraic set, the
Universal Partition Theorem is concerned with a family of such sets that are nested in
a complicated way. The main statement of the Universal Partition Theorem is that (up
to stable equivalence) one can recover certain families of semialgebraic sets as a family
of realization spaces of oriented matroids. These realization spaces are nested in a way
that is topologically equivalent to the nesting of the original semialgebraic sets. For a
long time no proof of this fact was available. A proof of a slightly weaker statement has
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recently been provided by Günzel [3]. The idea of using individual projective scales for
each variable was already used there. However, in Günzel’s approach stable equivalence is
only obtained up to the product of the semialgebraic sets with a non-controllable smooth
manifold. We here prove the original statement as it was claimed by Mnëv. The main
difficulty in the proof of such a kind of statement is that one has to keep track of many
semialgebraic sets at the same time, encoding them all into the same geometric situation.

2 Basic definitions and main result

2.1 Oriented matroids and chirotopes

Oriented matroids and their close relatives chirotopes encode the combinatorial structure
of point configurations in IRn (compare [1]). We can restrict ourselves to the case of
2-dimensional affine point configurations, and start with the basic definitions on the level
of chirotopes.

Definition 2.1. Let P = (p1, . . . ,pn) ∈ IR2·n be a finite 2-dimensional point configu-
ration on an index set X. We set pi = (xi, yi), for i = 1, . . . , n. The map

χ:X3 −→ {−1, 0, 1}

(i, j, k) 7−→ det




1 xi yi

1 xj yj

1 xk yk




is called the chirotope of P . A point configuration P is called a realization of a map
χ:X3 −→ {−1, 0, 1} if χP = χ. The triple (i, j, k) is called a basis of χ if χ(i, j, k) 6= 0.
If χ(i, j, k) = +1, then the realization space R(χ, (i, j, k)) is the set of all realizations P

of χ with pi = (0, 0), pj = (1, 0), and pk = (0, 1).

The map χP indicates for any triple of points whether they are clockwise oriented,
counterclockwise oriented, or collinear. An alternating map χ:X3 → {−1, 0, 1} is called
non-realizable if there is no point configuration P with χP = χ.

In general an alternating map χ:X3 → {−1, 0, 1} is a chirotope when additional
conditions (known as Grassmann-Plücker relations) are satisfied. We will omit the detailed
definition here. However, these relations are always fulfilled if χ comes from a point
configuration. All sign maps, that play a rôle in this article are indeed chirotopes.

2.2 Semialgebraic sets and stable equivalence

Let Ω = ({fi}0<i≤r, {gi}0<i≤s, {hi}0<i≤t) be a finite collection of polynomials

f1, . . . , fr, g1, . . . , gs, h1, . . . , ht ∈ ZZ[x1, . . . , xn]

with integer coefficients. The basic semialgebraic set V (Ω) ∈ IRn is the set

V = V (Ω) :=
{

x ∈ IRn | fi(x) = 0 for i = 1, . . . , r

gi(x) < 0 for i = 1, . . . , s

hi(x) ≤ 0 for i = 1, . . . , t
}
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defined as the solution of a finite number of polynomial equations and polynomial in-
equalities. A basic semialgebraic set is called primary, if the defining equations contain
no non-strict inequalities (i.e. t = 0 in the above notion). Thus, for example, the set
{0, 1} and the open interval ]0, 1[⊂ IR are primary semialgebraic sets, while the closed
interval [0, 1] is a basic semialgebraic set in IR that is not primary. Semialgebraic sets
form a general setting to define subsets of IRn by polynomial equations and inequalities.
To see that the realization space of a chirotope is a (primary) semialgebraic set one checks
that the realization space is the set of all matrices Q ∈ IR2·n for which some entries are
fixed, and the determinants have to be positive, negative or zero (compare [1]).

For an exact statement of a Universal Partition Theorem, we have to introduce the
concept of simultaneous stable equivalence of a family of basic semialgebraic sets. We call
a finite (ordered) collection (V1, . . . , Vm) of pairwise disjoint basic semialgebraic sets Vi ⊆
IRn a semialgebraic family. Let V = (V1, . . . , Vm) with Vi ⊆ IRn and letW = (W1, . . . ,Wm)
with Wi ⊆ IRn+d be semialgebraic families with π(Wi) = Vi for i = 1, . . . , n, where π is
the canonical projection π : IRn+d → IRd that deletes the last d coordinates. V is a stable

projection of W if for i = 1, . . . , m the Wi have the form

Wi =
{
(v, v′) ∈ IRn+d | v ∈ Vi and φj(v) · v′ > 0; ψk(v) · v′ = 0 for all j ∈ X; k ∈ Y

}
.

Here X and Y denote finite (possibly empty) index sets. For j ∈ X and k ∈ Y the
functions φj and ψk are polynomial functions

φj = (φ1
j , . . . , φ

d
j) : IRn → (IRd)∗ with φl

j ∈ ZZ[x1, . . . , xn] and

ψk = (ψ1
k, . . . , ψ

d
k) : IRn → (IRd)∗ with ψl

k ∈ ZZ[x1, . . . , xn],

that associate a linear functional on IRd to every element of IRn.
Two semialgebraic families V and W are rationally equivalent if there exists a homeo-

morphism f :
⋃m

i=1 Vi →
⋃m

i=1Wi such that both f and f−1 are rational functions and
f(Vi) = Wi for i = 1, . . . , m.

Definition 2.2. Two semialgebraic families V and W are stably equivalent, denoted
V ≈ W, if they are in the same equivalence class with respect to the equivalence relation
generated by stable projections and rational equivalence.

Definition 2.3. If V = (V ) and W = (W ) are semialgebraic families consisting of a
single semialgebraic set and V ≈ W, then V is stably equivalent to W .

Definition 2.4. Let V ∈ IRn be a primary semialgebraic set and let fi, . . . , fm ∈
ZZ[x1, . . . , xn] be polynomial functions on IRn. For σ ∈ {−1, 0,+1}m we abbreviate

Vσ := {v ∈ V | sign(fi(v)) = σi for all i = 1, . . . , m}.

The collection of primary semialgebraic sets (Vσ)σ∈{−1,0,+1}m is called a partition of V .

In particular, partitions are special semialgebraic families. Moreover, we can recover
any primary semialgebraic set W ∈ IRn as a component of a partition of IRn. To see this,
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we simply consider the partition that is induced by the polynomials of the defining equa-
tions f1(v) = 0, . . . , fk(v) = 0 and defining strict inequalities fk+1(v) > 0, . . . , fm(v) > 0
of W . We then have W = Vσ with σ = (0, . . . , 0︸ ︷︷ ︸

k times

, +1, . . . ,+1︸ ︷︷ ︸
m−k times

).

Figure 1 illustrates a partition V of IR2 that is induced by two linear polynomials (the
two lines) and two quadratic polynomials (the circle and the hyperbola). The elements
of V that have maximal dimension are marked by the letters a, . . . , m. In particular the
sets a, b, . . . , e are disconnected.

a

ab
b

c

cd

d

e

e

f

g

h

i

j

k

l

m

Figure 1

The Universal Partition Theorem for oriented matroids may now be stated as follows.

Theorem 2.5. For any partition V = (Vσ)σ∈{−1,0,+1}m of IRn there is an index set X
and a collection of alternating sign maps (χσ:X3 → {−1, 0, 1})σ∈{−1,0,+1}m with common

basis B such that

V ≈ (R(χσ, B))σ∈{−1,0,+1}m .

In particular this theorem implies the Universality Theorem for oriented matroids.
For of the sets Vσ in V the above statement ensures that there is a χσ such that R(χσ, B)
is stably equivalent to Vsigma. Since every semialgebraic set can occur as a component
of a semialgebraic family, this implies the original Universality Theorem.

We will give the proof of the Universal Partition Theorem for oriented matroids in the
next few sections. The proof given here does not rely on a Shor normal form.
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3 The algebraic part

3.1 Projective scales and quadrilateral sets

The cross ratio (p1,p2|p3,p4) of four points on a line ` is defined by

(p1,p2|p3,p4) =
|p1,p3| · |p2,p4|

|p1,p4| · |p2,p3|
.

Here |pi,pj| denotes the (oriented) euclidean distance of pi, and pj and we assume that
none of the points lies at infinity. The cross ratio is invariant under projective transfor-
mations; therefore we can also extend the above definition to the case where one or more
of the points lies at infinity. In particular, if ` is equipped with a euclidean scale then
we have (x, 1|0,∞) = x. In other words, after the choice of three distinct positions of
0, 1 and ∞ on a line, the cross ratio exactly measures the euclidean scale. We say that
0, 1 and ∞ define a projective scale. We will encode our variables xi by points on a line
with respect to individual projective scales 0i, 1i and ∞

i for each variable. Our points
on a line are related by quadrilateral set relations. These relations are our key to trans-
late arithmetic relations into geometric conditions. Like cross ratios they form projective
invariants.

Definition 3.1. A 6-tuple of numbers (a, b, c, d, e, f) ∈ IR6 forms a quadrilateral set

provided

q(a, b, c, d, e, f) :=
(a− d)(c− f)(e− b)

(a− f)(c− b)(e− d)
= 1.

The number q(a, b, c, d, e, f) is called the quadrilateral ratio and is a projective invariant
for six points a, . . . , f on a line. In particular we get

lim
e→∞

q(a, b, c, d, e, f) =
(a− d)(c− f)

(a− f)(c− b)
and lim

e,f→∞
q(a, b, c, d, e, f) =

a− d

c− b
.

Five numbers in a quadrilateral set uniquely determine the sixth number. Since the
formula q involves only differences between the indeterminants, we have

q(a, b, c, d, e, f) = q(a+ t, b+ t, c+ t, d+ t, e+ t, f + t),

for any number t ∈ IR. This effect can be also considered as a consequence of the fact
that translation by a scalar t is a projective transformation. We cover the limit case by
setting ∞+ t = ∞. In particular, addition and multiplication is modeled by the following
quadrilateral set relations:

q(x, y, 0, x+ y,∞,∞) = 1, q(x, y, 1, x · y,∞, 0) = 1.

For the Universal Partition Theorem, we make use of the following quadrilateral set
relations and their translates:

q(0, 0,−x, x,∞,∞) = 1

q(0, y,−x, x+ y,∞,∞) = 1

q(1, 1, 1/x, x,∞, 0) = 1

q(1, y, 1/x, x · y,∞, 0) = 1
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We will use quadrilateral set relations as basic operations and obtain normal forms
that are closely related to the original system of polynomials. In the next few sections we
aim for a normal form that has the following properties.

• The variables that occur are strictly totally ordered.

• The only relations that occur are quadrilateral set relations and “perturbed” quadri-
lateral set relations.

• Additions, multiplications, and equalities are represented by quadrilateral set rela-
tions.

• Inequalities are represented by perturbed quadrilateral set relations.

The resulting normal form may be considered as a structure in which each variable,
each elementary addition or multiplication, each equation, and each inequality is repre-
sented by a “cluster” of points that forms an individual projective scale and encodes the
corresponding relation. Within each cluster the points are totally ordered by construc-
tion. We obtain an overall total ordering on the variables by simply lining up all the
individual clusters one after the other. The elements of different clusters will be linked
by quadrilateral set relations.

3.2 Computations of polynomials

The first steps of our approach to a normal form follow the approach of Günzel [3]. We
first observe that it is sufficient to restrict our considerations to partitions of the set
(1,∞)n consisting of all vectors of IRn with all entries strictly greater than 1.

Lemma 3.2. For any partition V = (Vσ)σ∈{−1,0,+1}m of IRn there is a partition W =
(Wσ)σ∈{−1,0,+1}m of (1,∞)2n such that V ≈ W.

Proof. Let f1(x), . . . , fm(x) ∈ ZZ[x1, . . . , xn] be the defining equations of V. Then the
defining equations of W are f1(u− v), . . . , fm(u− v) ∈ ZZ[u1, . . . , un, v1, . . . , vn] together
with the inequalities ui > 1 and vi > 1 for all i = 1, . . . , n. We show this by proving
V ≈1 W

′ ≈2 W, where ≈1 is a stable projection and ≈2 is a rational equivalence. The
partition W ′ is a partition of the semialgebraic set

ĨR
2n

:=
{
(x,y) ∈ IRn × IRn | x ∈ IRn and yi > x; yi > −xi for i = 1, . . . , n

}
.

The defining equations for W ′ are given by the polynomials

f1(x), . . . , fm(x) ∈ ZZ[x1, . . . , xn, y1, . . . , yn].

By definition this gives a stable projection fromW ′ to V. The rational equivalence between
W ′ and W is given by the affine transformation

T : IR2n −→ IR2n

(x,y) 7−→ (
x + y

2
+ 1,

−x + y

2
+ 1).
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We have T (ĨR
2n

) = (1,∞)2n. Furthermore, if (u, v) = T (x,y), we get x = u− v.

B2

A2B2

x10

1

y

0

y

x

B1A1B1

B0C0A0C0B0

V

W1 W

↓ ≈1

≈2

−→

Figure 2

Figure 2 illustrates the equivalences of the last proof in a simple example. The orig-
inal partition is 1-dimensional and is defined by one polynomial f(x) = x2 − 1. The
corresponding partition consists of three semialgebraic sets

A0 = {x | x2 − 1 < 0}, B0 = {x | x2 − 1 > 0}, C0 = {x | x2 − 1 = 0}.

A0 is just an open line segment, B0 consists of two open intervals and C0 consists of
two points. The stable projection ≈1 increases the dimension of each of the sets by one.
The semialgebraic sets that are stably equivalent to A0 and B0 are marked A1 and B1,

respectively. By tha stable projection ≈1 the wedge ĨR
2

is mapped onto IR. Finally, the

affine transformation T rotates and shifts ĨR
2

and maps it to (1,∞)2. The corresponding
cells of full dimensions are marked A2 and B2.

Now we consider a partition V of (1,∞)n by polynomials f1, . . . , fm ∈ ZZ[x1, . . . , xn].
Each such polynomial fi can be written as f+

i − f−i with f+
i , f

−
i ∈ IN[x1, . . . , xn]. The

polynomial f+
i collects all terms of fi with positive coefficients, the polynomial f−i collects

all terms with negative coefficients.
The computation of a polynomial f(x1, . . . , xn) ∈ IN[x1, . . . , xn] can be decomposed

into a sequence of elementary additions and multiplications that start from the values
1, x1, . . . , xn and compute f step by step. We consider f as bracketed in a way in which
each bracket contains exactly one elementary addition or multiplication. The integral
coefficients may be decomposed into a summation of ones. For instance, the polynomial
x2 + 3y3 can be bracketed as

x2 + 3y3 = ((x · x) + (((1 + 1) + 1) · ((y · y) · y))).
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For each bracket α = (. . .) that occurs we introduce an additional variable Vα. In our
example we get

Vx2 = x · x, Vy2 = y · y, Vy3 = Vy2 · y,

V2 = 1 + 1, V3 = V2 + 1, V3y3 = V3 · Vy3 , Vx2+3y3 = Vx2 · V3y3 .

We call such a decomposition of f a computation of f . If all variables x1, . . . , xn are
greater than one, then (since the coefficients of f are also greater than one) the values
of all intermediate variables Vα are greater than one, as well. Compared to the Shor
normal form, a computation of a polynomial does not provide any control on the order
of intermediate variables (except that they are all greater than one). For instance if we
consider x+ y = z we do not know whether x < y or y < x.

Lemma 3.3. For each polynomial f ∈ IN[x1, . . . , xn] there is

• an integer k ≥ n,

• additional variables xn+1, . . . , xk,

• a collection A ⊂ {“x + y = z” | x, y, z ∈ (0, 1, x1, . . . , xk)} of additions, and

• a collection M ⊂ {“x · y = z” | x, y, z ∈ (0, 1, x1, . . . , xk)} of multiplications

such that for every “input” (x1, . . . , xn) ∈ (1,∞)n a solution of the system A ∪M

• determines all variables x1, . . . , xk,

• satisfies (x1, . . . , xk) ∈ (1,∞)k, and

• satisfies xk = f(x1, . . . , xn).

Proof. The statement is a summary of the properties of the stepwise decomposition of
f into elementary additions and multiplications we just presented.

Remark 3.4. Under complexity theoretical aspects, the decomposition of integers into
a summation of ones is by far not optimal. It creates a number of intermediate variables
that is exponential in the bit coding length of the integers. If one is heading for good
complexity bounds, one can bypass this problem by choosing a more efficient coding
method that does use additions and multiplications. Using binary coding mechanisms
one can in principle achieve that the number of intermediate variables is linear in the bit
coding length of the integers.

We now model a computation of polynomials by introducing “clusters” of variables
that are related by quadrilateral set operations.
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Definition 3.5. Let Y = (0, 1, x1, . . . , xk) be a set of formal variables. A cluster B =
(X,Q) is a pair consisting of an ordered collection X = (x′0, . . . , x

′
l) of variables that

satisfies {0, 1} ⊆ {x′0, . . . , x
′
l} ⊆ Y and a (possibly empty) set Q of signed quadrilateral

set relations

Q ⊂
{

“sign(q(a, b, c, d, e, f)− 1) = σ” | a, b, c, d, e, f ∈ X and σ ∈ {−1, 0,+1}
}
.

We set B↓ = x′0 and B↑ = x′l. Concrete values x′0, . . . , x
′
l ∈ IR satisfy a cluster B = (X,Q)

if the are totally ordered by x′0 < x′1 < . . . x′l, and they fulfill the requirements in Q.

We now consider the original (partition defining) polynomial system f1, . . . , fm ∈
ZZ(x1, . . . , xn), where the input values of the xi may be taken in (1,∞). The next lemma
is proved by modeling a computation of all polynomials f1, . . . , fm by a collection of
clusters.

Lemma 3.6. For any partition V = (Vσ)σ∈{−1,0,+1}m of (1,∞)n induced by polynomials

f1, . . . , fm ∈ ZZ[x1, . . . , xn] there exists integers K and N , such that the semialgebraic

family

W =
({

y = (y1, . . . , yN) ∈ IRN | 1 < y1 < y2 < . . . < yN and

qi(y) = 1 for i = 1, . . . , K and

sign(qi(y)− 1) = σi for i = 1, . . . , m
})

σ∈{−1,0,+1}m

is stably equivalent to V. Here qi and qi denote quadrilateral ratios on certain 6-tuples in

{−1, 0, 1, y1, . . . , yN ,∞}.

Proof. For each polynomial f+
1 , f

−
1 , . . . , f

+
m, f

−
m we consider the decomposition into ele-

mentary additions and multiplications given in Lemma 3.3. We collect all nV intermediate
variables that occur in all calculations into a set Y = {0, 1, x1, . . . , xn, xn+1, . . . , xnV

}. We
assume that there are nA + nM elementary operations altogether; nA additions and nM

multiplications. Furthermore, we have to implement nS = m sign conditions. We fix a
certain sign vector σ ∈ {−1, 0,+1}m and consider the following collection of clusters:

(0): We set B0 = ((V 0
−1, 0

0, 10), {q(00, 00, V 0
−1, 1

0,∞,∞) = 0}).

(V): For each variable xi with i ∈ {x1, . . . , xnV
} we introduce a cluster

Bi = ( ( V i
−xi
, 0i, V i

1/xi
, 1i, xi

i ),

{ q(0i, 0i, V i
−xi
, xi

i,∞,∞) = 1,

q(1i, 1i, V i
1/xi

, xi
i,∞, 0i) = 1 } ).

(A): For the i-th (i ∈ {1, . . . , nA}) elementary addition xa+xb = xc we set j = nV +i
and introduce a cluster

Bj = ( ( V j
−xa

, 0j, xj
b, x

j
c ),

{ q(xj
b, 0

j, V j
−xa

, xj
c,∞,∞) = 1 } ).
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(M): For the i-th (i ∈ {1, . . . , nM}) elementary multiplication xa · xb = xc we set
j = nV + nA + i and introduce a cluster

Bj = ( ( 0j, V j
1/xa

, 1j, xj
b, x

j
c ),

{ q(1j, xj
b, V

j
1/xa

, xj
c,∞, 0j) = 1 } ).

(S): For the i-th (i ∈ {1, . . . , nS}) polynomial fi = f+
i − f−i with xa = f+

i and
xb = f−i we set j = nV + nA + nM + i and introduce a cluster

Bj = ( ( V j
−xa

, 0j, xj
b ),

{ sign(q(0j, 0j, V j
−xa

, xj
b,∞,∞)− 1) = σi } ).

In the above description 0i and 1i represent formal variables that (together with ∞) form
a projective scale for the cluster Bi. We set M = nV + nA + nM + nS. For each pair
of cluster variables W i,W j with W ∈ {0, 1, V−1, x1, V−x1

, V1/x1
, . . . , , xk, V−xk

, V1/xk
} and

i, j ∈ {0, . . . , N} with i 6= j, we also introduce a quadrilateral relation

q(0i,W j, 0j,W i,∞,∞) = 1. (∗)

These last linking relations force that W i−0i = W j−0j, i.e., the variable W has identical
values with respect to the projective scales of the clusters Bi and Bj. Obviously, some
of these linking relations are redundant. However, since we do not aim for complexity
theoretic results, we may neglect this redundancy. Finally, we identify B↑i−1 = B↓i for
i = 1, . . . , N , i.e., the “last” point of the cluster Bi is the “first” point of the cluster Bi+1.
We set 00 = 0 and 10 = 1 and xi

i − 0i = xi.
For a given “input” x = (x1, . . . , xn) ∈ (1,∞)n the conditions of the clusters (0) –

(M) together with the linking relations (∗) uniquely determine all variables that occur
in the clusters. Moreover, within each cluster Bi = ((x′0, x

′
1, . . . , x

′
l),Qi) the variables are

consistently ordered: x′0 < x′1 < . . . < x′l. Thus all cluster variables taken together form
a strictly ordered chain V−1 < 0 < 1 < y1 < y2 < . . . < yN . Finally, the requirements
given by the clusters in (S) encode the sign conditions σ on the polynomials f1, . . . , fm.
Thus all quadrilateral set conditions are satisfied simultaneously if and only if x ∈ Vσ.
We denote the set of all points (y1, . . . , yn) in IRN satisfying all of the above requirements
by Wσ. The values of (y1, . . . , yn) ∈ Wσ are given by a rational function f : Vσ → Wσ in
the values (x1, . . . , xn) ∈ Vσ. The inverse function f−1 is given by xi = xi

i − 0i. Thus Vσ

and Wσ are rationally equivalent. Since f and f−1 are the same for all σ ∈ {−1, 0,+1}m

we have V ≈ W.

We close this section by exemplifying the concept of clusters in the easiest possible
example. We consider the partition of IR given by the polynomial g(x) = x+1. Applying
the technique of Lemma 3.2, this translates to a partition of (1,∞)2 defined by the
polynomial f(x1, x2) = x1 − x2 + 1. A decomposition of this polynomial into a positive
and a negative part consists only of elementary expressions already. We set

f+(x1, x2) = x1 + 1 = x3 and f−(x1, x2) = x2.
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So, we have to encode three variables, one addition and one comparison. The next figure
shows the corresponding collection of cluster variables. The variables are illustrated as
points in their final total ordering. Observe that the last variable of the cluster Bi and
the first variable of the cluster Bi+1 are identified.

V 0

−1
00 10

V 1

−x1
01 V 1

1/x1
11 x1

1

V 2

−x2
02 V 2

1/x2
12 x3

3

V 3

−x3
03 V 3

1/x3
13 x4

3

V 4

−1
04 x4

1
x4

3

V 5

−x3
05 x5

2

︷ ︸︸ ︷

︸ ︷︷ ︸

︷ ︸︸ ︷

︸ ︷︷ ︸

︷ ︸︸ ︷

︸ ︷︷ ︸

B0

B1

B2

B3

B4

B5

s s s s s s s s s s s s s s s s s s s s
−1 0 1 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17

Figure 3

After relabelling, this translates into 17 variables y1, . . . , y17 altogether (plus additional
points for −1, 0, 1, and ∞). The clusters (0) – (M) taken together force 8 quadrilateral
set relations on these variables. After deleting redundancies, the linking relations force
8 additional quadrilateral set relations. Finally, the sign condition is expressed as one
perturbed quadrilateral set relation sign(q(y16, y16, y15, y17,∞,∞)− 1) = σ.

4 The geometric part

We now conclude the proof of the Universal Partition Theorem for oriented matroids, by
encoding the quadrilateral sets into a point configuration.

Proof of Theorem 2.5. With the method of encoding a partition into a collection
of clusters as given by Lemma 3.6, our proof is almost finished. It remains to apply
a standard construction that encodes quadrilateral sets into point configurations and
thereby fixes the orientations. This process was already described by Mnëv [4, 5] and by
Shor [7]. In principle this can be done by a slightly refined “von Staudt construction”.
We consider our variables together with −1, 0, 1, and ∞ as points on a line and consider
the projective scale defined by 0, 1, and ∞. We have to implement the quadrilateral set
relations of Lemma 3.6 by suitable point configurations. This can be done by intersecting
the sides of a complete quadrilateral with a line (that is where the name “quadrilateral
set” comes from). Up to translation, the only cases that occur are

q(0, 0,−x, x,∞,∞) = 1, q(0, y,−x, x+ y,∞,∞) = 1,

q(1, 1, 1/x, x,∞, 0) = 1, q(1, y, 1/x, x · y,∞, 0) = 1,

and the sign conditions sign(q(0, 0,−x, y,∞,∞)− 1) = σ.
The corresponding point configurations are shown in Figure 4 In each of the cases

four new points labeled a, . . . , d are introduced. Each of these configurations contains
an “information line” `, on which the values of the variables are represented by points.
Points a and b lie on a line `′. The position of the points c and d as well as all orientations
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are fixed by the incidence structure of the configuration and the ordering of the points on
` and on `′. Observe that, by choosing b very close to a one can achieve that the points
b, c, and d are in an ε-neighborhood of a, for arbitrary small ε > 0.

∞ −x 0 x ∞ −x 0 y x+y

∞ 0 1/x 1 x ∞ 0 1/x 1 y x·y

`

`

`

`

`′

`′

`′

`’

a

b

a

b

a

b

a

b

c
d

c
d

c
d

c

d

Figure 4

The sign conditions can be encoded into perturbed versions of the right upper config-
uration of Figure 4. For this the points c, d, and ∞ are no longer assumed to be collinear.
Depending on the orientation of the triple (c, d,∞) we get either x < y, x > y, or x = y.
The two perturbed situations are shown in Figure 5.

∞ −x 0 y ∞ −x 0 y

a

b

a

b

c d

c

d

``

`′`′

Figure 5

Finally, all the necessary quadrilateral set relations have to be encoded into one point
configuration, thereby fixing all the orientations. We start with the line `, which we
identify with the x-axis, and a line `′, which we identify with the y-axis. The origin
is labeled ∞. All points in the final configuration will have non-negative x and y co-
ordinates. First the quadrilateral set relations q1, . . . , qK corresponding to our classes
(0) – (M) together with the linking relations (∗) are encoded. We take concrete values
y = (y1, y2, . . . , yN) that satisfy q1, . . . , qK , and are totally ordered y1 < y2 < . . . < yN .
By a projective transformation we map the points −1, 0, 1, y1, . . . , yN ,∞ onto the line `
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such that ∞ becomes the origin and and the sequence −1, 0, 1, y2, . . . , yN starts to the
right from the origin. We assume that the point labeled −1 has coordinates (1, 0). Now
we iteratively add the point configurations that encode the quadrilateral set relations. For
each qi we introduce four new points ai, . . . , di in the following way. We set a1 = (0, 1)
and b1 = (0, 2). The points c1 and d1 are chosen according to the point configuration of
Figure 4 that encodes q1. For i = 2, . . . , K we set ai = (0, αi) where αi > 0 is chosen
large enough that it is above all the lines spanned by points that are already constructed
(except for line `′ itself on which ai lies). Now let bi = (0, αi + εi) where εi > 0 is a very
small number. We construct ci and di according to the configuration that encodes qi.
Choosing εi small enough we can achieve that all lines that are spanned by points that
are so far constructed (except of those passing through the origin) have negative slope
(i.e., they intersect `′ above the origin). For small εi it happens as well that the signs of
all orientations involving one of the points bi, ci, or di are completely determined by the
type of the quadrilateral set relation qi and do not depend on the actual choice of y. This
can be shown by a simple case analysis. The obstructions to the choices of the αi and the
εi can be expressed as stable projections. Finally, we have to add our m sign conditions.
For each of the relations qi in Lemma 3.6, with i = 1, . . . , m, we add a configuration of
the incidence type as given in Figure 5. We do this by adding points aK+i, . . . , dK+i in
the same way as described above. We call the oriented matroid of the resulting point
configuration χ[y]. The construction fixes all orientation except of χ[y](∞, cK+i, dK+i),
for 1 = 1, . . . , m. These signs are dependent on the choice of our input parameters y.
The construction forces

χ[y](∞, cK+i, dK+i) = sign(qi(y)− 1),

for i = 1, . . . , m. Hence the orientations of χ[y] depend just on the choice of the input
parameters y. We now define χσ as an alternating sign function on

X3 = {−1, 0, 1, y1, . . . , yN ,∞, a1, b1, . . . , cK+m, dK+m}
3.

The labels of X are equipped with a total order “≺”. The map χσ is the determined by
its values χσ(i, j, k) with i ≺ j ≺ k. For this we define

χσ(i, j, k) =

{
χ[y](i, j, k), if (i, j, k) 6= (∞, cl, dl), K < l ≤ K +m,

σi, if (i, j, k) = (∞, cl, dl), K < l ≤ K +m.

By construction this choice of χσ has the desired properties: if y ∈ Wσ (with the Wσ

of Lemma 3.5), then we have χσ = χ[y]; if Wσ is empty, then χσ is non-realizable. As
common basis of all χσ we choose B = (∞,−1, a0). The desired stable equivalence be-
tween the realization spaces R(χσ, B) and the sets Wσ are given by the stable projections
that determine the values αi and εi and the rational equivalence that describes the actual
construction of the points.
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