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Abstract

This article presents a complete proof of Mnév’s Universality Theorem and and
a first complete proof of Mnév’s Universal Partition Theorem for oriented matroids.
The Universality Theorem states that, for every primary semialgebraic set V' there
is an oriented matroid M, whose realization space is stably equivalent to V. The
Universal Partition Theorem states that, for every partition V of IR™ induced by
m polynomial functions fi,..., fi,, with integer coefficients there is a correspond-
ing family of oriented matroids (M )se{—1,041}» such that the collection of their
realization spaces is stably equivalent to the family V.

1 Introduction

Oriented matroids (also known as combinatorial geometries) form a combinatorial model
for point configurations in linear vector spaces. The oriented matroid M(P) of a (linear)
point configuration P = (py,...,p,) in RY is a list of all the partitions of points in P
induced by linear hyperplanes in IR?. The realization space of the oriented matroid M(P)
is the space of all point configurations P’ in IR? that generate the same partitions as P
does. In particular, oriented matroids contain complete information about the incidence
structure of P (i.e. information about which point sets in P are linearly dependent). One
can as well describe oriented matroids on the level of (signed) affine point configurations
and partitions by affine hyperplanes. For a broad introduction to the theory of oriented
matroids see [1] and [2].

One of the most prominent and surprising facts of oriented matroid theory is Mnév’s
Universality Theorem [4, 5]. Tt states that the realization spaces of oriented matroids can
become arbitrarily complicated. More precisely:

For every primary semialgebraic set V' defined over Z there is an oriented
matroid M, whose realization space is stably equivalent to V.

The key idea behind the proof is to encode an arbitrary system of polynomial equations
and strict inequalities £ into the geometry of a point configuration P(€) (the space of
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solutions V(&) of £ is a primary semialgebraic set). This can be done in principle by
the use of the classical von Staudt constructions of projective geometry. The different
solutions of £ correspond then to (classes of) different realizations of M(P(E))). The
main problem that occurs in such a kind of construction is to arrange the configuration
in a way such that the combinatorial structure is stable for all possible solutions of £.

Mnév’s original proof is very technical and complicated. It consists of an algebraic part,
that models the computation of the system & by elemtentrary operations. The “space
of computations” of a given system of polynomials is subdivided into certain strata =;.
Each stratum represents a set of computations in which the total orders of results of
sub-computations are fixed. A tricky perturbation technique is used to show that one can
arrange the computation in a way such that there is a stratum = that is already equivalent
to V(€). After this, von Staudt constructions are used to encode this into a geometric
configuration. The control in the total order of intermediate results translates to the
control of the oriented matroid of the point configuration. The values of the variables are
encoded by the positions of points on a line ¢ with respect to a projective scale given by
the position of points 0, 1 and co on /.

Much clarification was achieved by an alternative proof of Shor. A sketch of this
proof is given in [7]. Shor replaced the algebraic part of Mnév’s proof by a normal form
algorithm:

Every primary semialgebraic set V' over 7 is stably equivalent to a semialge-
braic set V'’ € IR"™ whose variables 1 = 21 < x5 < ... < x,, are totally ordered
and for which all defining equations have the form x; +x; =z, or x; - x; = a3,
for certain 1 <1< j <k <n.

This normal form is achieved by certain replacement rules. The problem there is to choose
the replacement rules in a way that preserves the algebraic structure of the solution space
and successively creates a total order on all variables that are involved.

It is one of the scopes of this paper is to give an even simpler proof of Mnév’s Univer-
sality Thoerem. In our proof, we also aim for a normal form in which the variables are
strictly totally ordered. However, the elementary operations that occur are quadrilateral
set relations rather than additions and multiplications. The values of the variables are
retrieved by interpreting them with respect to individual projective scales, one scale for
each variable and one scale for each elementary operation. By this the total ordering of
the variables can be achieved by lining up the different projective scales one after the
other as clusters of points on a line. The different scales are linked by quadrilateral set
relations.

As a second scope of this paper, this construction provides a proof of an even stronger
theorem: The Universal Partition Theorem as it was originally stated by Mnév in [6].
While the Universality Theorem is concerned with a single primary semialgebraic set, the
Universal Partition Theorem is concerned with a family of such sets that are nested in
a complicated way. The main statement of the Universal Partition Theorem is that (up
to stable equivalence) one can recover certain families of semialgebraic sets as a family
of realization spaces of oriented matroids. These realization spaces are nested in a way
that is topologically equivalent to the nesting of the original semialgebraic sets. For a
long time no proof of this fact was available. A proof of a slightly weaker statement has



recently been provided by Giinzel [3]. The idea of using individual projective scales for
each variable was already used there. However, in Giinzel’s approach stable equivalence is
only obtained up to the product of the semialgebraic sets with a non-controllable smooth
manifold. We here prove the original statement as it was claimed by Mnév. The main
difficulty in the proof of such a kind of statement is that one has to keep track of many
semialgebraic sets at the same time, encoding them all into the same geometric situation.

2 Basic definitions and main result

2.1 Oriented matroids and chirotopes

Oriented matroids and their close relatives chirotopes encode the combinatorial structure
of point configurations in IR™ (compare [1]). We can restrict ourselves to the case of
2-dimensional affine point configurations, and start with the basic definitions on the level
of chirotopes.

DEFINITION 2.1. Let P = (p,,...,p,) € IR*" be a finite 2-dimensional point configu-

ration on an index set X. We set p;, = (x;,;), for i = 1,... . n. The map
x:X? — {-1,0,1}
I oz oy
(i,,k) —— det| 1 z; vy,
I m oy

is called the chirotope of P. A point configuration P is called a realization of a map
x: X3 — {=1,0,1} if xF = x. The triple (4, j, k) is called a basis of x if x(i,j, k) # 0.
If x(4,7,k) = +1, then the realization space R(x, (i,7,k)) is the set of all realizations P
of x with p; = (0,0), p; = (1,0), and p; = (0, 1).

The map XP indicates for any triple of points whether they are clockwise oriented,
counterclockwise oriented, or collinear. An alternating map y: X® — {—1,0,1} is called
non-realizable if there is no point configuration P with y* = y.

In general an alternating map y: X® — {—1,0,1} is a chirotope when additional
conditions (known as Grassmann-Pliicker relations) are satisfied. We will omit the detailed
definition here. However, these relations are always fulfilled if x comes from a point
configuration. All sign maps, that play a role in this article are indeed chirotopes.

2.2 Semialgebraic sets and stable equivalence
Let Q = ({ fi Yo<i<r, {9i fo<i<s, {hito<i<t) be a finite collection of polynomials

fl,...,fr,gl,...,gs,hl,...,ht € Z[xl,...,xn]
with integer coefficients. The basic semialgebraic set V(€2) € IR"™ is the set
V=V(@Q):={xzeR"| fi(z)=0fori=1..r

gi(x)<Ofori=1,... s
hi(w>§0f0ri:1,...,t}
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defined as the solution of a finite number of polynomial equations and polynomial in-
equalities. A basic semialgebraic set is called primary, if the defining equations contain
no non-strict inequalities (i.e. ¢ = 0 in the above notion). Thus, for example, the set
{0,1} and the open interval |0,1[C IR are primary semialgebraic sets, while the closed
interval [0, 1] is a basic semialgebraic set in IR that is not primary. Semialgebraic sets
form a general setting to define subsets of R by polynomial equations and inequalities.
To see that the realization space of a chirotope is a (primary) semialgebraic set one checks
that the realization space is the set of all matrices Q € IR*" for which some entries are
fixed, and the determinants have to be positive, negative or zero (compare [1]).

For an exact statement of a Universal Partition Theorem, we have to introduce the
concept of simultaneous stable equivalence of a family of basic semialgebraic sets. We call
a finite (ordered) collection (V1,...,V},) of pairwise disjoint basic semialgebraic sets V; C
IR" a semialgebraic family. Let V = (V4,...,V,,) with V; CIR" and let W = (Wy, ..., W,,)
with W; € IR™™ be semialgebraic families with 7(W;) = V; for i = 1,...,n, where 7 is
the canonical projection 7 : R™"* — IR that deletes the last d coordinates. V is a stable
projection of W if for i = 1,...,m the W; have the form

W, = {('v,'v’) c R™™ | veV;and ¢;(v) - v' > 0; Yp(v) -v' =0 for all j € X; keY}.

Here X and Y denote finite (possibly empty) index sets. For j € X and k € Y the
functions ¢; and 1), are polynomial functions

o = ( },...,gb;»l) ‘R" — (RY)*  with gbé € Zlxy,...,x,] and
U = (Y, ..., ) : R™ — (RY*  with ok € Z[xy, ..., z,],

that associate a linear functional on IR? to every element of IR".

Two semialgebraic families V and W are rationally equivalent if there exists a homeo-
morphism f:U", V; — U™, W; such that both f and f~! are rational functions and
fV)y=W;fori=1,...,m.

DEFINITION 2.2. Two semialgebraic families V and W are stably equivalent, denoted
Y ~ W, if they are in the same equivalence class with respect to the equivalence relation
generated by stable projections and rational equivalence.

DEFINITION 2.3. If V = (V) and W = (W) are semialgebraic families consisting of a
single semialgebraic set and V = W, then V is stably equivalent to W'.

DEFINITION 2.4. Let V € IR" be a primary semialgebraic set and let f;,..., f,, €
Z[x,...,x,| be polynomial functions on IR". For o € {—1,0,+1}"™ we abbreviate

V,:={v eV |sign(fi(v)) =0, foralli=1,...,m}.
The collection of primary semialgebraic sets (V5 )se—1,0,41y= is called a partition of V.

In particular, partitions are special semialgebraic families. Moreover, we can recover
any primary semialgebraic set W € IR"™ as a component of a partition of IR". To see this,
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we simply consider the partition that is induced by the polynomials of the defining equa-
tions f1(v) =0,..., fr(v) = 0 and defining strict inequalities fy 1(v) >0,..., fn(v) >0
of W. We then have W =V, with 0 = (0,...,0, +1,...,+1).
NSRRI A
k times m—k times

Figure 1 illustrates a partition V of IR? that is induced by two linear polynomials (the
two lines) and two quadratic polynomials (the circle and the hyperbola). The elements
of V that have maximal dimension are marked by the letters a,...,m. In particular the
sets a, b, ..., e are disconnected.

Figure 1

The Universal Partition Theorem for oriented matroids may now be stated as follows.

THEOREM 2.5. For any partition V = (V,)se{-1,0,+13m of R" there is an index set X
and a collection of alternating sign maps (x»: X* — {—1,0,1}),e{_1,0+1yn with common
basis B such that

V= (R(Xo) B))oet-1.0.+1)m-

In particular this theorem implies the Universality Theorem for oriented matroids.
For of the sets V, in V the above statement ensures that there is a x,, such that R(x,, B)
is stably equivalent to Viigma. Since every semialgebraic set can occur as a component
of a semialgebraic family, this implies the original Universality Theorem.

We will give the proof of the Universal Partition Theorem for oriented matroids in the
next few sections. The proof given here does not rely on a Shor normal form.



3 The algebraic part

3.1 Projective scales and quadrilateral sets
The cross ratio (py, Py|P3, Py) of four points on a line ¢ is defined by

D1, P3| - |Pa; D4
|p17p4| : |p2,p3|

Here |p;, p;| denotes the (oriented) euclidean distance of p;, and p; and we assume that
none of the points lies at infinity. The cross ratio is invariant under projective transfor-
mations; therefore we can also extend the above definition to the case where one or more
of the points lies at infinity. In particular, if ¢ is equipped with a euclidean scale then
we have (x,1|0,00) = z. In other words, after the choice of three distinct positions of
0,1 and oo on a line, the cross ratio exactly measures the euclidean scale. We say that
0,1 and oo define a projective scale. We will encode our variables x; by points on a line
with respect to individual projective scales 0%, 1° and oo’ for each variable. Our points
on a line are related by quadrilateral set relations. These relations are our key to trans-
late arithmetic relations into geometric conditions. Like cross ratios they form projective
invariants.

(P, P2|P3, Py) =

DEFINITION 3.1. A 6-tuple of numbers (a,b,c,d,e, f) € R® forms a quadrilateral set

provided
(@ —d)(c— f)(e —b)
(@ = f)(c—0b)(e—d)

The number ¢(a, b, ¢, d, e, f) is called the quadrilateral ratio and is a projective invariant

q(a,b,c,d,e, f) = =1.

for six points a,..., f on a line. In particular we get
—d)(c— —d
ellrgoq(a, b,c,d,e, )= % and ?LHOOQ(G bc,d e, f) = Z_ 5

Five numbers in a quadrilateral set uniquely determine the sixth number. Since the
formula ¢ involves only differences between the indeterminants, we have

q(a7b7c7d7€7f):q(a+t7b+t7c+t7d+t7e+t7f+t)7

for any number ¢ € IR. This effect can be also considered as a consequence of the fact
that translation by a scalar ¢ is a projective transformation. We cover the limit case by
setting oo+t = oo. In particular, addition and multiplication is modeled by the following
quadrilateral set relations:

q(z,y,0,x +y,00,00) =1,  q(x,y,1,2-y,00,0) = 1.

For the Universal Partition Theorem, we make use of the following quadrilateral set
relations and their translates:

q(0,
q(O Y, —x,x +y,00,00) =
q(1,1,1/z,x,00,0) =
q(l,y,1/2,2-y,00,0) =

—x, T, 00,00) =

—_ = = =
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We will use quadrilateral set relations as basic operations and obtain normal forms
that are closely related to the original system of polynomials. In the next few sections we
aim for a normal form that has the following properties.

e The variables that occur are strictly totally ordered.

e The only relations that occur are quadrilateral set relations and “perturbed” quadri-
lateral set relations.

e Additions, multiplications, and equalities are represented by quadrilateral set rela-
tions.

e Inequalities are represented by perturbed quadrilateral set relations.

The resulting normal form may be considered as a structure in which each variable,
each elementary addition or multiplication, each equation, and each inequality is repre-
sented by a “cluster” of points that forms an individual projective scale and encodes the
corresponding relation. Within each cluster the points are totally ordered by construc-
tion. We obtain an overall total ordering on the variables by simply lining up all the
individual clusters one after the other. The elements of different clusters will be linked
by quadrilateral set relations.

3.2 Computations of polynomials

The first steps of our approach to a normal form follow the approach of Giinzel [3]. We
first observe that it is sufficient to restrict our considerations to partitions of the set
(1,00)™ consisting of all vectors of IR™ with all entries strictly greater than 1.

LEMMA 3.2. For any partition V = (V;)seq-1,0413» of R" there is a partition W =
(We)oe(-1,0413m of (1, 00)?" such that V ~ W.

PROOF. Let fi(x),..., fm(x) € Z]xy,...,x,] be the defining equations of V. Then the
defining equations of W are fi(u —v),..., fm(u —v) € Zluy, ..., u,, vy, ..., v,| together
with the inequalities u; > 1 and v; > 1 for all = 1,...,n. We show this by proving
Y =1 W =5 W, where =~ is a stable projection and =2, is a rational equivalence. The
partition W is a partition of the semialgebraic set

—~2n

R = {(a:,y) ceR"xR"|xeR"and y; >z, y; > —x; for i = 1,...,n}.
The defining equations for W’ are given by the polynomials

fi(@), ..., fm(®) € Zlx1, ..., 20, Y1, - Ynl-

By definition this gives a stable projection from W’ to V. The rational equivalence between
W' and W is given by the affine transformation
T:R*”™ — R™

T+y —T+Y
1
> T2

(@,y) — ( +1).



We have T(ﬁ%) = (1,00)*". Furthermore, if (u,v) = T(x,y), we get * = u — v. O

W Y A W A
1 =

> L

T

8y

(@)

N
8y

<_
2

0 Co DBy

é}n
o

By

Figure 2

Figure 2 illustrates the equivalences of the last proof in a simple example. The orig-
inal partition is 1-dimensional and is defined by one polynomial f(x) = 2? — 1. The
corresponding partition consists of three semialgebraic sets

Ay={z|2*-1<0}, By={x|2*-1>0}, Co={x|2>—1=0}.

Ag is just an open line segment, Bj consists of two open intervals and Cy consists of
two points. The stable projection a2 increases the dimension of each of the sets by one.
The semialgebraic sets that are stably equivalent to Ay and By are marked A; and B,

—2
respectively. By tha stable projection ~; the wedge IR is mapped onto IR. Finally, the

)
affine transformation T rotates and shifts IR™ and maps it to (1,00)?. The corresponding
cells of full dimensions are marked A, and B,.

Now we consider a partition V of (1,00)™ by polynomials fi,..., fn, € Z[xq,. .., 2,]).
Each such polynomial f; can be written as f;" — f; with f;*, fi € N[zy,...,2,]. The
polynomial f;" collects all terms of f; with positive coefficients, the polynomial f;~ collects
all terms with negative coefficients.

The computation of a polynomial f(xq,...,z,) € Nxy,...,z,] can be decomposed
into a sequence of elementary additions and multiplications that start from the values
1,21,..., 2, and compute f step by step. We consider f as bracketed in a way in which
each bracket contains exactly one elementary addition or multiplication. The integral
coefficients may be decomposed into a summation of ones. For instance, the polynomial
22 + 3y3 can be bracketed as

2 +3y° = ((z-2) + (L+ D)+ 1) ((y-v) - v)
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For each bracket o = (...) that occurs we introduce an additional variable V,,. In our
example we get

‘/12:3:"7:7 VyQZy'ya VySZVyQ'y7
Vom 141, Vi= Vot 1, Vi = Vy Vs, Vi = Vi - Vi,

We call such a decomposition of f a computation of f. If all variables xq,...,x, are
greater than one, then (since the coefficients of f are also greater than one) the values
of all intermediate variables V,, are greater than one, as well. Compared to the Shor
normal form, a computation of a polynomial does not provide any control on the order
of intermediate variables (except that they are all greater than one). For instance if we
consider x + y = z we do not know whether x < y or y < z.

LEMMA 3.3. For each polynomial f € IN|xy,...,z,| there is
e an integer k > n,
e additional variables x, 1, ..., T,
e a collection AC {“c+y=2"|x,y,2€ (0,1,x1,...,x%)} of additions, and
e a collection M C {“z-y=2"|z,y,z € (0,1, 21,...,zx)} of multiplications

such that for every “input” (zi,...,x,) € (1,00)" a solution of the system AU M

e determines all variables x4, ..., xy,
e satisfies (zy,...,7;) € (1,00)*, and
o satisfies x = f(x1,...,2,).

PRrROOF. The statement is a summary of the properties of the stepwise decomposition of
f into elementary additions and multiplications we just presented. O

REMARK 3.4. Under complexity theoretical aspects, the decomposition of integers into
a summation of ones is by far not optimal. It creates a number of intermediate variables
that is exponential in the bit coding length of the integers. If one is heading for good
complexity bounds, one can bypass this problem by choosing a more efficient coding
method that does use additions and multiplications. Using binary coding mechanisms
one can in principle achieve that the number of intermediate variables is linear in the bit
coding length of the integers.

We now model a computation of polynomials by introducing “clusters” of variables
that are related by quadrilateral set operations.



DEFINITION 3.5. Let Y = (0,1,21,...,2%) be a set of formal variables. A cluster B =
(X, Q) is a pair consisting of an ordered collection X = (zy,...,x]) of variables that
satisfies {0,1} C {xy,...,2;} C Y and a (possibly empty) set Q of signed quadrilateral
set relations

QC { “sign(q(a,b,c,d,e, f)—1)=0" |a,b,c,d,e, f € X and 0 € {—1,0,+1} }

We set B! =z, and B! = z]. Concrete values ), ..., 7] € IR satisfy a cluster B = (X, Q)
if the are totally ordered by z; < ) < ...z}, and they fulfill the requirements in Q.

We now consider the original (partition defining) polynomial system fi,..., f,, €
Z(xy,...,x,), where the input values of the z; may be taken in (1, 00). The next lemma
is proved by modeling a computation of all polynomials fi,..., f,, by a collection of
clusters.

LEMMA 3.6. For any partition V = (V,)sc(-1,0,+13m of (1,00)" induced by polynomials
fi,- oy fm € Zxy,...,x,| there exists integers K and N, such that the semialgebraic
family

W:({y:(yh---,yN)G]RN| l<y; <y <...<yn and
¢(y)=1fori=1,...,K and

sign(q;(y) — 1) = o; fori=1,..., m})oe{71,0,+1}m

is stably equivalent to V. Here q; and q; denote quadrilateral ratios on certain 6-tuples in
{_17 07 1»917 - YN, OO}

PROOF. For each polynomial fi", fi,..., f.f, f.. we consider the decomposition into ele-
mentary additions and multiplications given in Lemma 3.3. We collect all ny intermediate
variables that occur in all calculations into a set Y = {0, 1,21, ..., 2n, Tpi1, ..., Tny . We
assume that there are na + njy; elementary operations altogether; n 4 additions and ny,
multiplications. Furthermore, we have to implement ng = m sign conditions. We fix a
certain sign vector o € {—1,0,+1}™ and consider the following collection of clusters:

(0):  Weset By = ((V%,0°1%), {q(0°% 0%V, 1% 00,00) = 0}).

(V):  For each variable z; with ¢ € {z1,...,x,,} we introduce a cluster
Bi=((V:,, 0V}, 1'a}),
{ q(0",0%, V'

Q(lza 1@" 1i/xi,l'§, OO,OZ) =1 } )

i _
, &t 00,00) = 1,

(A):  Forthei-th (i € {1,...,n4}) elementary addition z,+x, = z. we set j = ny+i
and introduce a cluster

BJ = ( ( Vﬁma,Oj,xi,xg )7
{q(xlj;aoja sza,xg, 0, OO) =1 } )
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(M):  For the i-th (i € {1,...,ny}) elementary multiplication z, - x, = z. we set
J =mny +na4 + 1 and introduce a cluster

B =(( Oj,Vlj/%, V], xi),
{a(V9, 27, V], al,00,0/) = 1} ).

(S):  For the i-th (i € {1,...,ng}) polynomial f; = f¥ — fi with z, = f;' and
xy = f; weset j =ny +ng+ny + ¢ and introduce a cluster

Bj=((V2,,,00,2]),
{ sign(q(07, 07, V7, @) 00,00) = 1) = 03 }).

In the above description 0° and 1? represent formal variables that (together with o) form
a projective scale for the cluster B;. We set M = ny + na + ny + ng. For each pair
of cluster variables W*, W7 with W € {0,1,V_y, 21, V_y,, Vijuys- -, Tky Vegy, Vija, } and
i,7 €{0,..., N} with i # j, we also introduce a quadrilateral relation

q(0°, W, 0/, W', 00, 00) = 1. (%)

These last linking relations force that Wi —0" = W7 — (7, i.e., the variable W has identical
values with respect to the projective scales of the clusters B; and B;. Obviously, some
of these linking relations are redundant. However, since we do not aim for complexity
theoretic results, we may neglect this redundancy. Finally, we identify BZT_l = Bil for
1=1,..., N, ie., the “last” point of the cluster B; is the “first” point of the cluster B, ;.
We set 0° =0 and 1° =1 and z¢ — 0° = z;.

For a given “input” & = (z1,...,2,) € (1,00)" the conditions of the clusters (0) —
(M) together with the linking relations (%) uniquely determine all variables that occur
in the clusters. Moreover, within each cluster B; = ((z(, 2}, ..., 2]), Q;) the variables are
consistently ordered: zj, < z} < ... < x}. Thus all cluster variables taken together form
a strictly ordered chain V_; <0 <1 < y; < ys < ... < yyn. Finally, the requirements
given by the clusters in (S) encode the sign conditions ¢ on the polynomials f1,..., fi.
Thus all quadrilateral set conditions are satisfied simultaneously if and only if x € V.
We denote the set of all points (yy,...,y,) in R” satisfying all of the above requirements
by W,. The values of (y1,...,y,) € W, are given by a rational function f : V, — W, in

the values (z1,...,1,) € V,. The inverse function f~! is given by x; = z! — 0°. Thus V,
and W, are rationally equivalent. Since f and f~! are the same for all ¢ € {—1,0, +1}™
we have V =~ W. |

We close this section by exemplifying the concept of clusters in the easiest possible
example. We consider the partition of IR given by the polynomial g(z) = x+ 1. Applying
the technique of Lemma 3.2, this translates to a partition of (1,00)? defined by the
polynomial f(z1,x9) = 21 — z2 + 1. A decomposition of this polynomial into a positive
and a negative part consists only of elementary expressions already. We set

frrnam)=m +1=25 and [ (21,2) = 2a.
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So, we have to encode three variables, one addition and one comparison. The next figure
shows the corresponding collection of cluster variables. The variables are illustrated as
points in their final total ordering. Observe that the last variable of the cluster B; and
the first variable of the cluster B;,; are identified.

—_—
0 0 0 2 2 12 2 3 4 4 4 4
Vo, o 1 V_DC2 0 V1/12 1 xy Ve 0 x]
—1 0 1 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15 Y16 Y17
1 1 7,1 1 1 3 3 13 3 4 5 5 5
Vﬂv1 0 VI/I1 1 x] szs 0 V1/13 1 xg szs 0 x3
—_———
Bl 83 85
Figure 3

After relabelling, this translates into 17 variables y1, . . ., 17 altogether (plus additional
points for —1, 0, 1, and oo). The clusters (0) — (M) taken together force 8 quadrilateral
set relations on these variables. After deleting redundancies, the linking relations force
8 additional quadrilateral set relations. Finally, the sign condition is expressed as one
perturbed quadrilateral set relation sign(q(y16, Y16, Y15, Y17, 00,00) — 1) = 0.

4 The geometric part

We now conclude the proof of the Universal Partition Theorem for oriented matroids, by
encoding the quadrilateral sets into a point configuration.

PrOOF OF THEOREM 2.5. With the method of encoding a partition into a collection
of clusters as given by Lemma 3.6, our proof is almost finished. It remains to apply
a standard construction that encodes quadrilateral sets into point configurations and
thereby fixes the orientations. This process was already described by Mnév [4, 5] and by
Shor [7]. In principle this can be done by a slightly refined “von Staudt construction”.
We consider our variables together with —1, 0, 1, and oo as points on a line and consider
the projective scale defined by 0, 1, and co. We have to implement the quadrilateral set
relations of Lemma 3.6 by suitable point configurations. This can be done by intersecting
the sides of a complete quadrilateral with a line (that is where the name “quadrilateral
set” comes from). Up to translation, the only cases that occur are

q(0,0,—:I:,:c,oo,oo) = q(O,y,—x,x+y,oo,OO) = 17

1,
q(1,1,1/z,2,00,0) = 1, ql,y,1/z,z-y,00,0) = 1,
and the sign conditions sign(q(0,0, —z,y,00,00) — 1) = 0.
The corresponding point configurations are shown in Figure 4 In each of the cases
four new points labeled a,...,d are introduced. Each of these configurations contains
an “information line” ¢, on which the values of the variables are represented by points.

Points a and b lie on a line ¢'. The position of the points ¢ and d as well as all orientations
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are fixed by the incidence structure of the configuration and the ordering of the points on
¢ and on /. Observe that, by choosing b very close to a one can achieve that the points
b, ¢, and d are in an e-neighborhood of a, for arbitrary small € > 0.

% v
b b
a a
d d
[
/o; —x 0 T
Z/
b
a
d
[
Ao 0 1z 1 z

Figure 4

The sign conditions can be encoded into perturbed versions of the right upper config-
uration of Figure 4. For this the points ¢, d, and oo are no longer assumed to be collinear.
Depending on the orientation of the triple (¢, d, 0o) we get either z < y, x >y, or x = y.
The two perturbed situations are shown in Figure 5.

Z/

Figure 5

Finally, all the necessary quadrilateral set relations have to be encoded into one point
configuration, thereby fixing all the orientations. We start with the line ¢, which we
identify with the z-axis, and a line ¢/, which we identify with the y-axis. The origin
is labeled oco. All points in the final configuration will have non-negative x and y co-
ordinates. First the quadrilateral set relations qi,...,qx corresponding to our classes
(0) — (M) together with the linking relations () are encoded. We take concrete values
y = (Y1, %2, ...,yn) that satisfy qi,...,qk, and are totally ordered y; < o < ... < yn.
By a projective transformation we map the points —1,0,1,y1,...,yn, 00 onto the line ¢
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such that co becomes the origin and and the sequence —1,0,1,ys,...,yn starts to the
right from the origin. We assume that the point labeled —1 has coordinates (1,0). Now
we iteratively add the point configurations that encode the quadrilateral set relations. For

each ¢; we introduce four new points a;, ..., d; in the following way. We set a; = (0, 1)
and b; = (0,2). The points ¢; and d; are chosen according to the point configuration of
Figure 4 that encodes ¢;. For i = 2,..., K we set a; = (0,a;) where a; > 0 is chosen

large enough that it is above all the lines spanned by points that are already constructed
(except for line ¢ itself on which a; lies). Now let b; = (0, o; + ;) where g; > 0 is a very
small number. We construct ¢; and d; according to the configuration that encodes g;.
Choosing ¢; small enough we can achieve that all lines that are spanned by points that
are so far constructed (except of those passing through the origin) have negative slope
(i.e., they intersect ¢’ above the origin). For small ; it happens as well that the signs of
all orientations involving one of the points b;, ¢;, or d; are completely determined by the
type of the quadrilateral set relation ¢; and do not depend on the actual choice of y. This
can be shown by a simple case analysis. The obstructions to the choices of the a; and the
g; can be expressed as stable projections. Finally, we have to add our m sign conditions.
For each of the relations g; in Lemma 3.6, with ¢ = 1,...,m, we add a configuration of
the incidence type as given in Figure 5. We do this by adding points ax;,...,dg; in
the same way as described above. We call the oriented matroid of the resulting point
configuration x[y]. The construction fixes all orientation except of x[y](oco, cxii, drii),
for 1 = 1,...,m. These signs are dependent on the choice of our input parameters y.
The construction forces

X[y](00, cr i, dic1i) = sign(q;(y) — 1),

for i = 1,...,m. Hence the orientations of x|y] depend just on the choice of the input
parameters y. We now define x, as an alternating sign function on

X3 — {—1,0, ].,yl, e ,yN, O(),al’bl’ e ’CK+m’dK+m}3.

The labels of X are equipped with a total order “<”. The map ¥, is the determined by
its values x, (i, 7, k) with ¢ < j < k. For this we define

X[y]('l;];k); if (Z7j7k)7é<ooucl7dl>7 K<ZSK—|—TTL,
0;, if (i,j, k) = (OO,Cl,dl), K<I<K+m.

Xo(i, . k) = {

By construction this choice of x, has the desired properties: if y € W, (with the W,
of Lemma 3.5), then we have x, = x|y]; if W, is empty, then y, is non-realizable. As
common basis of all x, we choose B = (00, —1,a¢). The desired stable equivalence be-
tween the realization spaces R(x,, B) and the sets W, are given by the stable projections
that determine the values o; and ¢; and the rational equivalence that describes the actual
construction of the points. O
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