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Abstract. Let P ⊂ Rd be a d-dimensional polytope. The real-
ization space of P is the space of all polytopes P ′ ⊂ Rd that are
combinatorially equivalent to P , modulo affine transformations.
We report on work by the first author, which shows that realiza-
tion spaces of 4-dimensional polytopes can be “arbitrarily bad”:
Namely, for every primary semialgebraic set V defined over Z, there
is a 4-polytope P (V ) whose realization space is “stably equivalent”
to V . This implies that the realization space of a 4-polytope can
have the homotopy type of an arbitrary finite simplicial complex,
and that all algebraic numbers are needed to realize all 4-polytopes.
The proof is constructive.

These results sharply contrast the 3-dimensional case, where
realization spaces are contractible and all polytopes are realizable
with integral coordinates (Steinitz’ Theorem). So far no similar
universality result was known for any fixed dimension.

1. Polytopes and their realization spaces

Polytopes have a long tradition as objects of mathematical study. Their
historical roots reach back to the ancient Greek mathematicians, having a
first highlight in the enumeration of the famous Platonic Solids. Already at
this point strong impetus came from the fact that polytopes intimitately re-
late topics from geometry, algebra and combinatorics. (The Platonic Solids
solve a first ennumerative question in polytopal geometry, to find all poly-
topes with a flag transitive symmetry group — a combinatorial concept).

Definition 1. Let P = (p1, . . . ,pn) ∈ Rd·n be a finite collection of points
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that affinely span Rd. The set

P = conv(P ) :=
{

n
∑

i=1

λipi |
n

∑

i=1

λi = 1 and λi ≥ 0 for i = 1, . . . , n
}

,

the convex hull of the point set P , is called a d-dimensional polytope (a “d-
polytope” for short). The faces of P are the intersections P ∩A, where A is
an affine hyperplane that does not meet the relative interior of P. The face
lattice of P is the set of all faces of P , partially ordered by inclusion.

While a polytope is a geometric object, its face lattice is purely combi-
natorial in nature. Figure 1(a) illustrates a 2-polytope as the convex hull of
finitely many points in the plane. We see that those points that are not in an
extreme position have no contribution to the polytope itself. The points in
extreme position (i.e., the 0-dimensional faces) are the vertices of a polytope.
Figure 1(b) shows a cube as an example of a 3-dimensional polytope.

(a) (b)

Figure 1

The need to structure the set of all polytopes of a fixed dimension leads
to two main lines of study:

• to list all possible combinatorial types of polytopes (in other words,
to decide which finite lattices correspond to polytopes, and which do
not),

• to describe the set of all realizations of a given combinatorial type.

The “set of all realizations” of a combinatorial type is formalized below by
the concept of the realization space of a polytope. Besides their intrinsic im-
portance for questions of real discrete geometry, such spaces appear in sub-
jects as diverse as algebraic geometry (moduli spaces), differential topology
(see Cairns’ smoothing theory [8]), and nonlinear optimization (see Günzel
et al. [11]).

Assume that in Definition 1 each point pi for i = 1, . . . , n is a vertex of
P . A realization of a polytope P is a polytope Q = conv(q1, . . . , qn) such
that the face lattices of P and Q are isomorphic under the correspondence
pi → qi. The sequence of vertices B = (p1, . . . ,pd+1) is a basis of P if these
points are affinely independent in any realization of P .
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Definition 2. Let P = conv(p1, . . . ,pn) ⊂ Rd be a d-polytope with n

vertices and with a basis B = (p1, . . . ,pd+1). The realization space R(P,B)
is the set of all matrices Q = (q1, . . . , qn) ∈ Rd·n for which conv(Q) is a
realization of P and qi = pi for i = 1, . . . , d+ 1.

It turns out that the realization space R(P,B) is essentially (up to “stable
equivalence,” see below) independent of the choice of a basis. Hence it makes
sense to speak of the realization space R(P ) of a polytope.

Every realization space is a primary semialgebraic set defined over Z: it is
the set of solutions of a finite system of polynomial equations fi(x) = 0 and
strict inequalities gj(x) > 0, where the fi and gj are polynomials with integer
coefficients on some RN . To see this, one checks that the realization space
is the set of all matrices Q ∈ Rd·n for which some entries are fixed, and the
determinants of certain d×d minors have to be positive, or negative, or zero.
For a general semialgebraic set one also admits non-strict inequalities hk ≥ 0.
Thus, for example, the set {0, 1} and the open interval ]0, 1[⊂ R are primary
semialgebraic sets, while the closed interval [0, 1] is a semialgebraic set in R
that is not primary.

In this research report we present a Universality Theorem proved by the
first author [17], stating that all primary semialgebraic sets are in a suitable
sense “stably equivalent” (see Section 3) to the realization spaces of suitable
4-polytopes.

2. Old and new results on realization spaces

What does the realization space of a polytope look like? Which algebraic
numbers are needed to coordinatize the vertex set of a given d-dimensional
polytope? How can one tell whether a finite lattice is the face lattice of a
polytope or not?

For 3-dimensional polytopes, Steinitz’ work [19, 20] answered these basic
questions about realization spaces more then seventy years ago. In par-
ticular, Steinitz’ “Fundamentalsatz der konvexen Typen” (today known as
Steinitz’ Theorem) and its modern relatives (see [9] and [23]) provide com-
plete answers to these questions for this special case.

Steinitz’ Theorem, 1922. A graph G is the edge graph of a 3-polytope if
and only if G is simple, planar and 3-connected.

Here simple means that G contains no “parallel edges” and no “loops.” A
graph G is planar if it can be drawn in the plane without intersections, and
it is 3-connected if between any two vertices there are three disjoint paths
in G.

As corollaries and by inspection of the proof of Steinitz’ Theorem one
obtains:

• For every 3-polytope P ⊆ R3 the realization space R(P ) is a smooth
open ball. (This ball has dimension e− 6, if P has e edges.)
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• For every 3-polytope P the space R(P ) contains rational points, that
is, every 3-polytope can be realized with integral vertex coordinates.

• The shape of one 2-face in the boundary of a 3-polytope P can be
arbitrarily prescribed, that is, the canonical map R(P ) → R(F ) is
surjective for every facet F ⊆ P (Barnette & Grünbaum [2]).

Similar statements for d-polytopes that have at most d+ 3 vertices were
proved by Mani [14] and Kleinschmidt [13].

Over the years, it became clear that no similar positive answer could be
expected for high-dimensional polytopes. Duality theory (“Gale diagrams”
[9, 23]) was used to construct a non-rational 8-polytope with 12 vertices
(Perles 1967 [9]). Also Mnëv’s famous Universality Theorem for oriented
matroids [15, 16, 5, 11] via Gale diagrams implies a universality theorem for
d-polytopes with d+4 vertices: in general for such polytopes the realization
spaces can be arbitrarily complicated.

Mnëv’s Universality Theorem for Polytopes, 1986. For every pri-
mary semi-algebraic set V defined over Z there is some d ∈ N and a d-
polytope P with d+ 4 vertices whose realization space is stably equivalent to
V .

In particular, stable equivalence implies homotopy equivalence. Stable
equivalence also preserves “algebraic complexity” (see Lemma 4 below).
As a consequence, all algebraic numbers are needed to coordinatize all d-
polytopes with d+ 4 vertices.

However, Gale diagram techniques and their variants (such as “Lawrence
extensions,” see Section 4) do not provide systematic construction methods
for d-polytopes in any fixed dimension d. Only a “sporadic” example of a
4-polytope with disconnected realization space was constructed (Bokowski,
Ewald & Kleinschmidt [6, 7, 15]). More sporadic examples showed that
the shapes of 3-faces of 4-polytopes (Kleinschmidt [12], Barnette [1]) and
of 2-faces of 5-polytopes (Ziegler [23]), cannot be prescribed arbitrarily.
Until now no general construction techniques to produce polytopes with
controllably bad behavior for any fixed dimension d were known. The
σ-construction presented in [21] for that purpose turned out to be incor-
rect [23].

In the following we report on the first author’s recent work [17] that
produces a complete systematic Universality Theorem for polytopes of di-
mension 4 (and thus for d-polytopes of any fixed dimension d ≥ 4). In
this work, all the “sporadic” examples of 4- and 5-polytopes are explained
in terms of Lawrence extensions of planar and 3-dimensional point config-
urations (see Section 4). Sporadic examples (such as a new 4-polytope for
which the shape of a hexagonal 2-face cannot be prescribed) are used as the
“basic building blocks” of the construction for the following result [17].

Main Theorem (Richter-Gebert, 1994). For every primary semi-algebraic
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set V defined over Z there is a 4-polytope P (V ) whose realization space
R(P (V )) is stably equivalent to V . Moreover, the face lattice of P (V ) can
be generated from the defining equations of V in polynomial time.

Corollaries of the Main Theorem and its construction techniques.

• There is a non-rational 4-polytope with 34 vertices.

• All algebraic numbers are needed to coordinatize all 4-polytopes.

• The realizability problem for 4-polytopes is NP-hard.

• The realizability problem for 4-polytopes is (polynomial time) equiva-
lent to the “Existential Theory of the Reals.”

• For every finite simplicial complex ∆, there is a 4-polytope whose re-
alization space is homotopy equivalent to ∆.

• There is a 4-polytope for which the shape of a 2-face cannot be arbi-
trarily prescribed.

• Boundary complexes of 4-polytopes cannot be characterized by exclud-
ing a finite set of “forbidden minors.”

• In order to realize all combinatorial types of integral 4-polytopes with
vertex coordinates in {0, 1, . . . , f(n)}, the “coordinate size” function
f(n) has to be a doubly exponential function in n.

In particular these implications solve all the problems that were recently
emphasized in “Three problems about 4-polytopes” [22]. They also solve [23,
Problems 5.11∗, 6.10∗, and 6.11∗].

3. Stable equivalence

The concept we use to compare realization spaces with general primary
semialgebraic sets is stable equivalence. Although such a concept has been
used by different authors, the precise definitions they used (see [10, 11, 15,
16, 18]) vary substantially in their technical content. The common idea is
that semialgebraic sets that only differ by a “trivial fibration” and a rational
change of coordinates should be considered as stably equivalent, while semi-
algebraic sets that differ in certain “characteristic properties” should turn
out not to be stably equivalent. In particular, stable equivalence should
preserve the homotopy type, and respect the algebraic complexity and the
singularity structure. We now present a concept of stable equivalence that
is stronger than all previously used notions.

Let V ⊆ Rn and W ⊆ Rn+d be semialgebraic sets with π(W ) = V ,
where π is the canonical projection π : Rn+d → Rn that deletes the last
d coordinates. V is a stable projection of W if W has the form

W =
{

(v,v′) ∈ Rn+d | v ∈ V and φi(v)·v′ > 0; ψj(v)·v′ = 0 for all i ∈ X; j ∈ Y
}

.
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Here X and Y denote finite (possibly empty) index sets. For i ∈ X and
j ∈ Y the functions φi and ψj have to be polynomial functions

φi = (φ1
i , . . . , φ

d
i ) : Rn → (Rd)∗ with φk

i ∈ Z[x1, . . . , xn] and

ψj = (ψ1
j , . . . , ψ

d
j ) : Rn → (Rd)∗ with ψk

j ∈ Z[x1, . . . , xn],

that associate to every element of Rn a linear functional on Rd.
Two semialgebraic sets V and W are rationally equivalent if there exists

a homeomorphism f : V → W such that both f and f−1 are rational
functions.

Definition 3. Two semialgebraic sets V and W are stably equivalent, de-
noted V ≈ W , if they are in the same equivalence class with respect to
the equivalence relation generated by stable projections and rational equiv-
alence.

Lemma 4. Let V ≈ W , with V ⊆ Rn and W ⊆ Rm, be a pair of stably
equivalent semialgebraic sets, and let A be a subfield of the algebraic num-
bers. We have

(i) V and W are homotopy equivalent.

(ii) V ∩An = ∅ ⇐⇒ W ∩Am = ∅.

(iii) V and W have equivalent “singularity structure.”

4. Polytopal tools

Lawrence extensions and connected sums are elementary geometric oper-
ations on polytopes that form the basis for the constructions presented in
[17]. They are very simple and innocent looking operations, but still very
powerful.

For Lawrence extensions the basic operation is the following: take a point
p in a d-dimensinal point configuration, and replace it by two new points p

and p that lie on a ray that starts at the original point, but goes off in some
“new” direction into (d+ 1)-dimensional space (see Figure 2).

Every such Lawrence extension increases both the dimension of a point
configuration, and its number of points, by 1. Note that although the orig-
inal point is deleted in the construction, it is still implicitly present: it can
be “reconstructed” as the intersection of the line spanned by the two new
points with the d-hyperplane spanned by the original point configuration.

The “classical” use of Lawrence extensions [4, 15] starts with a 2-dimensional
configuration of n points, and performs Lawrence extensions on all these
points, one after the other. The resulting configuration of 2n points is the
vertex set of an (n+ 2)-dimensional polytope, the Lawrence polytope of the
point configuration.
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p

p

p

R2

R3

Figure 2

Every realization of the Lawrence polytope determines a realization of the
original point configuration, including all collinearities and all orientations
of triples. In fact, the realization spaces of the Lawrence polytope and the
planar configuration can be shown to be stably equivalent. This can be
used to lift Mnëv’s Universality Theorem from planar point configurations
(oriented matroids) to d-polytopes.

If one wants to stay within the realm of 4-polytopes, then it is not permis-
sible to use more than two Lawrence extensions. However, careful use of just
one or two Lawrence extensions on some points outside a 2- or 3-polytope
leads to extremely interesting and useful polytopes — among them are the
basic building blocks for the Main Theorem. Here space permits us only to
sketch two such examples from [17].

First consider Pascal’s theorem: if the vertices of a hexagon H lie on an
ellipse, then the intersection points of the lines spanned by opposite edges
are collinear. If one takes the vertices of the hexagon together with the
three intersection points as the initial configuration, and performs Lawrence
extensions on the three intersection points, then one obtains a 5-dimensional
polytope with 12 vertices that has the original hexagon as a 2-face (Figure
3(a)). Furthermore the six new points that are generated by the Lawrence
extensions are affinely dependent and form a facet F of the resulting 5-
polytope.

The combinatorics of Lawrence extensions, together with Pascal’s Theo-
rem, implies that in every realization of this 5-polytope, the hexagon has to
have its vertices on an ellipse. (This is the 5-polytope constructed in [23,
p. 175].)

This is quite surprising — see the corresponding corollary of Steinitz’
Theorem for 3-polytopes. However, what was needed for the Main Theorem
was a 4-dimensional polytope with the same property. The search for such
an example was an open problem in [23, Problem 5.11]. It is now solved by
performing a Lawrence extension on the point q in Figure 3(b), outside a
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“tent” over a hexagon (a 3-polytope that arises by performing a Lawrence
extension on a certain point outside a hexagon).

We leave the proof for this example to the reader (see [17]), and proceed
from Lawrence extensions to the other basic construction method.

1

2

3

1
2

3

1

2

3
H

F

��

(a)

p

p

p

q

(b)

Figure 3

Connected sums of polytopes are obtained as follows. Assume that one
is given two d-polytopes P1 and P2 that have projectively equivalent facets
F1 and F2. We use F to denote the combinatorial type of F1

∼= F2. Then,
using a projective transformation, one can “merge” P1 and P2 into a more
complicated polytope, the connected sum Q := P1#F

P2. The polytope Q
has all the facets of P1 and P2, except for F1 and F2. However, the boundary
complex ∂F , consisting of all the proper faces of F , is still present in Q

(Figure 4).

−→

P1 P2

F1 F2

P1#F
P2

Figure 4

Now, if one takes an arbitrary realization of Q, then it is not in general
true that this realization arises as a connected sum of realizations of P1 and
of P2: in a “bad” realization of Q the boundary complex ∂F may not be
flat. In fact, in dimension d = 3 one can see that the complex ∂F in Q is
necessarily flat if and only if F is a triangle facet. In dimension 4, there
are several other types of facets that are “necessarily flat,” among them are
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pyramids, prisms, and tents. Only such necessarily flat facets are used in
connected sum operations for the proof of the Main Theorem.

5. Sketch of the proof

The proof of the Main Theorem is constructive. It starts with the defining
equations of a semialgebraic set, and uses them to explicitly construct the
face lattice of a 4-polytope. A result of Shor [18] is used, which states that
every primary semialgebraic set V is stably equivalent to a semialgebraic set
V ′ ∈ Rn whose defining inequalities fix a total order

1 = x1 < x2 < x3 < . . . < xn

on the variables, and for which all defining equations have the form

xi + xj = xk or xi · xj = xk

for certain 1 ≤ i ≤ j < k ≤ n. Such a set of defining equations and
inequalities is a Shor normal form of V . Thus only elementary addition and
multiplication have to be modelled: they are encoded into certain polytopes
for which certain 2-faces are not prescribable.

In the following we briefly describe how for a given primary semialgebraic
set V in Shor normal form a corresponding polytope P (V ) can be con-
structed whose realization space is stably equivalent to V . While Lawrence
extensions are used to generate “basic building blocks,” the connected sum
operation is used to combine these blocks to larger semantic units.

(i) The initial building blocks generated by Lawrence extensions are

• a 4-polytope that contains a hexagonal 2-face with vertices 1, . . . , 6,
in this order, such that in every realization of X the lines 1 ∨ 4, 2 ∨ 3
and 5 ∨ 6, are concurrent (see Section 4, Figure 3(b)),

• “forgetful transmitter” polytopes Tn that contain as faces an n-
gon G and an (n−1)-gon G′, such that in every realization of Tn the
configuration of the lines that are supported by the edges of G′ is
projectively equivalent to the configuration of lines that is determined
by certain n−1 edges of G,

• “connector” polytopes Cn that contain three n-gons G1, G2 and
G3 that are projectively equivalent to each other in every realization
of Cn.

(ii) Taking connected sums of the basic building blocks in (i), we obtain
polytopes P+ and P× that model addition and multiplication. These
two polytopes both contain 12-gons G with edges labelled by

0, 1, i, j, k,∞, 0′ , 1′, i′, j′, k′,∞′
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in this order. In each realization of P+ or P× the six intersections
α∗ = α∩α′ of opposite edge supporting lines of G lie on a line `. The
points 0∗, 1∗ and ∞∗ define a projective scale σ on `. Furthermore
P+ (resp. P×) is realizable if and only if σ(i∗) + σ(j∗) = σ(k∗) (resp.
σ(i∗) ·σ(j∗) = σ(k∗)). (Special care has to be taken in the case i = j.)

(iii) Again by connected sum operations these addition and multiplication
polytopes are composed to obtain the polytope P (V ) that contains a
(2n+6)-gon G with edges labelled by

0, 1, 2, . . . , n,∞, 0′, 1′, 2′, . . . , n′,∞′

in this order. In each realization of P (V ) the n + 3 intersections
α∗ = α ∩ α′ of opposite edge supporting lines of G lie on a line `.
The points 0∗, 1∗ and ∞∗ define a projective scale σ on `. Addition
and multiplication polytopes are adjoined according to the defining
equations of V . In this way the points of V are in one-to-one corre-
spondence with the values σ(1∗), . . . , σ(n∗) in all possible realizations
of P (V ).

Thus, modulo projective equivalence, P (V ) contains a centrally symmetric
(2n+6)-gon whose slopes of opposite edges in any realization of P (V ) encode
the coordinates of the corresponding point in the semialgebraic set V :

R(P (V )) ≈ {(σ(1∗), . . . , σ(n∗)) | P ∈ R(P (V ))} = V ′ ≈ V.
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Wissenschaften. Band 3 (Geometrie) Teil 3AB12, 1–139, 1922.

20. E. Steinitz & H. Rademacher, Vorlesungen über die Theorie der Polyeder, Springer
Verlag, Berlin 1934; reprint, Springer Verlag 1976.

21. B. Sturmfels, Boundary complexes of convex polytopes cannot be characterized locally,

Bull. London Math. Soc., 35 (1987), 314–326.

22. G.M. Ziegler, Three problems about 4-polytopes, in: Polytopes: Abstract, convex and

computational (T. Bisztriczky, P. McMullen, A. Weiss, eds.), Kluwer, Dordrecht 1994,
499–502.

23. G.M. Ziegler, Lectures on Polytopes, Graduate Texts in Mathematics 152, Springer-
Verlag New York 1995.


