
Testing Orientability for Matroids

is NP-complete

Jürgen Richter-Gebert

January 29, 1999

Abstract

Matroids and oriented matroids are fundamental objects in combinatorial ge-
ometry. While matroids model the behavior of vector configurations over general
fields, oriented matroids model the behavior of vector configurations over ordered
fields. For every oriented matroid there is a corresponding underlying oriented ma-
troid. This paper addresses the question how difficult it is to algorithmically decide
whether on the other hand one can assign an orientation to a given matroid. We
will prove that this problem is NP-complete.

1 Matroids and oriented matroids

This paper addresses the question of the algorithmic difficulty of testing whether a matroid
is orientable. Matroids and oriented matroids form an abstract generalization of the
combinatorial properties of arrangements of hyperplanes. While matroids merely encode
incidence information, oriented matroids in addition carry information about the relative
positions of the hyperplanes. Throughout this paper we will deal only with matroids
and oriented matroids of rank 3, which in an affine setup correspond to arrangements of
(pseudo) lines. To avoid unnecessary technical difficulties we will restrict all our definitions
to the case of rank 3. We start with a few basic notions that will translate our problem into
a problem about arrangements of pseudolines with certain prescribed incidence relations.

Consider an ordered collection L = (l1, l2, . . . , ln) of n oriented lines in the usual eu-
clidean plane IR2, indexed by the finite index set E = {1, 2, . . . , n}. The lines partition the
plane into a cell complex that consists of full-dimensional cells (the so called topes of the
arrangement), of one-dimensional cells (line segments and rays), and of zero-dimensional
cells (the vertices of the arrangement). In a canonical way the orientations of the lines
induce a signature on the collection of all cells: to each cell we assign a sign-vector
σ ∈ {−, 0, +}E (We use “+” and “−” as shorthand for +1 and −1). The i-th entry σi

of σ indicates whether the corresponding cell is on the positive side of li (σi = +), on
the negative side of li (σi = −), or if the cell is entirely contained in li (σi = 0). For an
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arrangement L the collection of all such sign-vectors together with their negatives and
the all-zero-vector is called the oriented matroid of L (or more precisely the covectors of
the oriented matroid of L). Figure 1 shows an arrangement of 5 lines together with a few
of the signatures.
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Figure 1: An arrangement of oriented lines

From an algebraic point of view the oriented matroid can be obtained as follows.
Assume that each line li is given by an equation ai · x + bi · y + ci = 0. Let

σ(x, y, z) := (sign(a1x + b1y + c1z), . . . , sign(anx + bny + cnz)).

The sign vector σ(x, y, 1) gives the signature of the cell that contains the point (x, y) ∈ IR2.
The set Λ(L) := {σ(x, y, z) | (x, y, z) ∈ IR3} gives exactly the covectors of L.

The combinatorial structure of the cell complex of the arrangement L is completely
described by its oriented matroid. The (covectors of the) matroid M(L) of L can be
derived from the oriented matroid by simply “forgetting” the orientation of the signature:

M(L) := |Λ(L)| := {(|σ1|, |σ2|, . . . , |σn|) | (σ1, σ2, . . . , σn) ∈ Λ(L)}

Thus the matroid only contains the incidence information of the line arrangement. The
essential piece of information that is encoded in M(L) is which triples of lines of L meet
in common points. The set of non-bases of L is given by

NB(L) :=
{
{i, j, k} | there is a σ ∈ M(L)\(0) with σi = σj = σk = 0 and |{i, j, k}| = 3

}
.

The three lines meet in a point if and only if their indices belong to one non-basis. In
our example of Figure 1 there are exactly two non-bases {1, 2, 4} and {3, 4, 5}. The set of
bases B(L) of our matroid is given as the complement

B(L) =
{
{i, j, k} | |{i, j, k}| = 3 and {i, j, k} #∈ NB(L)

}
.
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It is straightforward to switch back and forth between the descriptions of a matroid
in terms of non-bases, in terms of bases or in terms of covectors.

Both notions of matroids and oriented matroids are more general than the object
that we obtained by our above considerations about real oriented lines. The central
idea behind the theory of matroids and oriented matroids is to extract an axiomatic
characterization of the “combinatorial essence” of arrangements of hyperplanes. Actually
there are many cryptomorphic axiom systems both for matroids and for oriented matroids
[1]. Most suitable for our purposes is the characterization of oriented matroids in terms of
arrangements of pseudolines (see below). For our purposes it would suffice to know that
there is a polynomial time algorithm that decides whether a given set of triples is the set
of non-bases of a matroid. Nonetheless, for matters of completeness we give a definition
of matroids by an exchange axiom.

Definition 1.1. Let E be a finite index set and let B be a set of triples of indices. B
is the set of bases of a matroid if for every pair of bases bi ∈ B and b2 ∈ B and for every
e ∈ b1 there is an f ∈ b2 such that (b1 − {e}) ∪ {f} ∈ B.

From a set of bases B of a matroid we may switch to its set of covectors M, and we
may ask whether there exists an oriented matroid Λ such that its underlying matroid |Λ|
equals M. This is the orientability problem for matroids. In general, not all matroids are
orientable. In fact, Ziegler proved that there even is an infinite minor-minimal class of non-
orientable matroids [7]. We will strengthen this result by showing that the orientability
problem is NP-hard. (As a matter of fact, all realizable matroids — those coming from
line configurations — are orientable. It is remarkable that also the realizability problem
for oriented matroids turns out to be NP-hard [4, 6, 5].)

Let us now formally define what an oriented matroid is. We use the equivalence
of rank 3 oriented matroids to arrangements of pseudolines that is established by the
Folkman and Lawrence representation theorem [2].

Definition 1.2. A pseudoline is a simple closed curve in the real projective plane. An
arrangement of pseudolines is a collection of pseudolines where any two meet in exactly
one point where they transversally cross.

In an arrangement of pseudolines we can single out a particular pseudoline that (after
a suitable smooth deformation) can be identified with the line at infinity of the usual eu-
clidean plane. The remaining pseudolines partition IR2 again into a cell complex. Figure 2
shows a non-stretchable arrangement of pseudolines, i.e. there is no arrangement of lines
that generates the same cell complex. If we equip each of these pseudolines with an orien-
tation each cell gets a signature (in the same way as we got a signature for an arrangement
of oriented lines). Taking the sign-vectors of all cells together with their negatives and the
all-zero-vector, we get an oriented matroid. In fact the Folkman Lawrence representation
theorem tells us that every rank 3 oriented matroid (loopless without parallel elements,
compare [1]) can be generated that way. Thus the problem of orientability is equivalent
to the following equivalent problem.
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Figure 2: A non-stretchable arrangement of pseudolines

Problem 1.3. Given a set NB of non-bases of a matroid. Is there an arrangement
(p1, . . . , pn) of pseudolines such that the pseudolines (pi, pj, pk) meet in a point if and only
if (i, j, k) ∈ NB?

In the sequel we will prove that this problem is NP-complete. That this problem is
in NP follows from the fact that there exists a simple (polynomial-time) test whether an
orientation for a matroid actually satisfies the axiom system of oriented matroids. Thus
NP-hardness immediately implies NP-completeness of this problem. We can even go one
step further. Since also the matroid axioms are checkable in polynomial time we can focus
on the following problem:

Problem 1.4. Given a set NB of subsets of E all of cardinality three. Is there an
arrangement (p1, . . . , pn) of pseudolines such that the pseudolines (pi, pj, pk) meet in a
point if and only if (i, j, k) ∈ NB?

We will prove NP-hardness of this problem by encoding a certain version of the 3-
SAT problem into Problem 1.4. For this we first construct a frame of reference — a
set of non-bases that essentially admit only one pseudoline arrangement. Then we de-
fine sub-configurations that serve as logical switches. Finally we connect the switches by
constructions that encode the logical clauses. The final construction will have the prop-
erty that there exists a pseudoline arrangement if and only if the corresponding 3-SAT
problem was satisfiable. The following chapters are devoted to the different stages of the
construction.
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2 A variant of 3-SAT

Let X = (x1, x2, . . . , xn) be boolean variables. The literals over X are the variables in X
together with their negations ¬x1,¬x2, . . . ,¬xn. A three-clause is a triple of literals over
X (of which no two have the same index). Even more we assume that the three indices
of each clause are strictly ordered. For instance “(x1, x4, x6)” and “(¬x3,¬x5, x17)” are
three-clauses. The following problem is known to be NP-complete (compare [3]).

Problem 2.1. (NOT-ALL-EQUAL-3SAT) Given boolean variables x1, . . . , xn and a set
S of m three-clauses. Is there a truth assignment for the elements of X such that each
clause has at least one true literal and one false literal?

In an admissible assignment for Problem 2.1 the forbidden situations in a clause are
(false, false, false) and (true, true, true). By reversing the middle literal in each clause we
obtain the following variant of Problem 2.1.

Problem 2.2. (NOT-ALTERNATING-3SAT) Given boolean variables x1, . . . , xn and
a set S of m three-clauses. Is there a truth assignment for the elements of X such that
in none of the clauses the three literals alternate?

Notice that for this version it is essential to have a total order on the indices if X
that induces an order on the literals of each clause (otherwise it would be meaningless to
speak of alternating indices). In an admissible assignment for Problem 2.2 the forbidden
situations in a clause are (false, true, false) and and (true, false, true).

In our construction each clause will correspond to a pair of pseudolines that have at
least one crossing for each false/true (or true/false) transition in a clause. Thus alternating
clauses would force this pair of pseudolines to cross twice which is forbidden by the
definition.

3 The frame of reference

Let us now construct the “frame of reference” in which we embed the rest of out construc-
tions. For each odd n let Fn be the matroid with elements 0, 1, . . . , n, 1′, . . . , n′, 1′′, . . . , n′′

and the following set of non-bases:

{
{0, i, j} | 1 ≤ i ≤ n; 1 ≤ j ≤ n i #= j

}

∪
{
{0, i′, j′} | 1 ≤ i ≤ n; 1 ≤ j ≤ n i #= j

}

∪
{
{0, i′′, j′′} | 1 ≤ i ≤ n; 1 ≤ j ≤ n i #= j

}

∪
{
{i, j ′, k′′} | i + j + k = (3n + 3)/2

}

Theorem 3.1. Up to combinatorial isomorphism there is a unique arrangement of pseu-
dolines p0, p1, . . . , pn, p1′, . . . , pn′, p1′′ , . . . , pn′′ that has exactly the non-bases induced by
the matroid Fn.
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Figure 3: The reference frames F3 and F5

Proof. Clearly Fn contains Fn−2 as a substructure (after relabeling the elements). Thus
we can inductively build up a pseudoline arrangement for Fn. The arrangement for F1

simply consists of three lines p1, p2, p3 that meet in a point and a line p0 that crosses
the others in general position. We assume that p0 is the line at infinity of the usual
projective plane. In Fn the sets of indices {0, 1, . . . , n}, {0, 1′, . . . , n′} {0, 1′′, . . . , n′′} form
dependent sets. Thus the corresponding sets of pseudolines form three bundles. Each of
these bundles meets in common point “at infinity”. The remaining non-bases force that
in the center of the arrangement the lines form a triangular grid. When one wants to
extend Fn−2 to Fn (after relabeling) alltogether six new pseudolines have to be added.
Each of them is in an (up to smooth deformations) unique position.

1 2 3 4 5 6

1′
2′
3′
4′
5′
6′

Figure 4: Extracting a “rectangular” grid
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Figure 3 shows the arrangements corresponding to F3 and to F5. The line p0 at infinity
is drawn as a finite circle. Notice that in particular the order in which the lines appear
in each of the three bundles is entirely determined by the incidence situation.

If we choose n large enough, there will be a region of the pseudoline arrangement
of Fn whose cell complex is isomorphic to a rectangular grid (compare Figure 4). The
“horizontal” and “vertical” lines of this grid appear in total order. In this combinatorially
rigid grid we will embed the rest of our construction.

4 Levi’s enlargement lemma in a grid

The following statement is a classical result by Levi:

Theorem 4.1. Let P be an arrangement of pseudolines embedded in the real projective
plane and let A and B be two arbitrary points of the projective plane. Then there exists
a pseudoline p that meets A and B such that P ∪ {p} forms again an arrangement of
pseudolines.

For matters of simplicity we identify pseudolines with their indices. We say that an
arrangement of pseudolines Gn,m = (1, . . . , n, 1′, . . . , m′) is a combinatorial grid if 1, . . . , n
meet in a point, 1′, . . . , m′ meet in a point and the remaining part of the arrangement
forms a structure isomorphic to a rectangular grid, where the lines appear in the canonical
order (compare Figure 5 in which parallel lines are supposed to meet at infinity). For
i ∈ {1, . . . , n} and i′ ∈ {1′, . . . , m′} the intersection point i ∧ i′ is called a vertex of Gn,m.
By [i′, j′]i we denote the segment from i ∧ i′ to i ∧ j ′ on i and By [i, j]i′ we denote the
segment from i ∧ i′ to j ∧ i′ on i′.

1 2 3 4 5 6 7 8 9 10
1′
2′
3′
4′
5′
6′
7′
8′
9′

10′

4∧3′

7∧7′

Figure 5: Levi’s enlargement lemma on a grid

The following lemma is an immediate consequence of Levi’s enlargement lemma and
of the fact that any pair of pseudolines have to cross exactly once.
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Lemma 4.2. For a combinatorial grid Gn,m and let A = i∧ i′, B = j ∧ j ′ be two vertices
with i < j and i′ < j′.

(i) There exists an extension of Gn,m meeting A and B.

(ii) Any such extension cuts interior of the segments [i′, j′]k and [i, j]k′ for all i < k < j
and i′ < k′ < j′.

Proof. The first part of the statement is literally Levi’s enlargement lemma. The second
part of this theorem follows from the fact that any pair of pseudolines have to cross exactly
once.

The situation is illustrated in Figure 5. Each extension that meets 4 ∧ 3′ and 7 ∧ 7′

cuts the segments [4, 7]4′, [4, 7]5′, [4, 7]6′ , [3′, 7′]5, and [3′, 7′]6 in the interior. The above
Lemma allows us to focus our considerations to little rectangular portions of our grid, in
which we encode the different basic building blocks of our construction.

5 The switch

We now start to encode an instance of Problem 2.2 into an orientability problem. For
this let X = (x1, . . . , xn) be the sequence of boolean variables, and let C1, . . . , Cm be
the set of clauses. The frame F := F8(n+m)+1 is large enough to have a rectangular
grid G := G3n,3m+3 as sub-configuration whose main rectangular region is in addition not
crossed by any other pseudolines of F (compare Figure 4). For each variable xi from X
we reserve three consecutive horizontal lines (rows) ai, bi, ci of G. For each clause Cj we
reserve three consecutive vertical lines (columns) 1j, 2j, 3j of G. In addition, we reserve
three vertical lines 1, 2, 3 for encoding the switches that resemble the boolean variables.
Figure 6 sketches the global situation.

V1

V2

V3

Vn

switches C1 C2 C3 Cm

Figure 6: The structure to embed the NON-ALTERNATING-3SAT instance
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We will now describe how to add elements and non-bases to F in order to obtain a
matroid that is orientable if and only if the corresponding instance of Problem 2.2 had
an admissible assignment of boolean values.

For every variable xi we consider the rows ai, bi, ci and the columns 1, 2, 3 of G, and
enlarge our matroid as follows:

• We add elements xi and ¬xi “parallel to the rows”, i.e. these elements together
with the bundle of rows form a dependent set. This dependence can be achieved by
adding suitable non-bases.

• We introduce new elements Wi and Ui.

• We introduce additional non-bases:

(ai, 1, Wi), (ci, 3, Wi), (ai, 3, Ui), (ci, 1, Ui),

(bi, Wi, Ui), (2, xi, Ui), (ai,¬xi, Wi).

Now consider an enlargement of F by new pseudolines for the new elements xi, ¬xi, Wi

and Ui. Such an enlargement can clearly be generated by Lemma 4.2. In particular, it
is also possible to avoid any additional triples of coincident pseudolines by taking the
extensions in a suitably general position. Now, the second part of Lemma 4.2 together
with the fact that any two pseudolines are allowed to cross only once implies that for each
variable xi there are only two combinatorially different ways for such an enlargement.
The two situations are shown in Figure 7. We associate the situation on the right with
xi = false, and we associate the situation on the right with xi = true.

ai

xi

bi

¬xi

ci

Wi

Ui

1 2 3

ai

¬xi

bi

xi

ci

Wi

Ui

1 2 3

xi = true xi = false

Figure 7: The two states of a switch

We point out the following crucial observation:

Lemma 5.1. If we are in the situation xi = true then for all 0 < k < 3m + 3 the line
xi cuts the interval [ai, bi]k and the line ¬xi cuts the interval [bi, ci]k. For xi = true the
situation is reversed.
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Proof. The proof is an immediate consequence of the fact that the lines xi and ¬xi

meet the bundle of horizontal lines 1′, . . . , (3n)′ already at infinity. Therefore they are
“caught” within one layer of these rows. The definition of the configuration singles out
the two situations mentioned in the lemma.

Observe that the lines xi and ¬xi play a totally symmetric role in the configuration.

6 The clauses

It remains to encode the clauses C1, . . . , Cm by suitable new elements and non-bases.
Remember that for each clause Cj we reserved three vertical lines 1j, 2j, 3j. The clause
Cj consists of three literals. For each literal l that appears in the clause Cj we enlarge
our matroid as follows (we assume that l is either xi or ¬xi):

• We add one element T j
i .

• We introduce additional non-bases: (ai, 1j, T
j
i ), (ci, 3j, T

j
i ), (2j, l, T

j
i )

Now again consider an enlargement by the pseudolines for T j
i of our arrangement

generated so far. Depending on the state of l we can have one of the two situations shown
in Figure 8. The proof of the following lemma is again obvious.

ai

bi

l

ci

T j
i 1j 2j 3j

ai

bi

l

ci

T j
i 1j 2j 3j

l =false l =true

Figure 8: Connecting a switch and a clause

Lemma 6.1. If we are in the situation l = 0 then the line T j
i cuts the interval [1j , 2j]bi

otherwise T j
i cuts the interval [2j, 3j]bi .

Now we are almost done. There is only one missing element of our matroid for each
clause. Assume that clause Cj consists of literals coming from variables xi1 , xi2 and xi3 .

• We add one element Cj.

• We introduce additional non-bases: (bi1 , T
j
i1, Cj), (bi2 , T

j
i2, Cj), (bi3 , T

j
i3 , Cj).
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Extending our arrangement of pseudolines by the lines for C1, . . . , Cm is only possible
if the corresponding literals in the clauses do not alternate. Alternating literals would
force the line Cj to cross the line 2j twice which forbidden by the axioms. Again Lemma
4.2 ensures that in all other cases the pseudolines are insertable. Figure 9 shows two
situations (left and middle) in which the literals do not alternate and the (dashed) line
Cj is insertable. The picture on the right shows a situation, where the literals alternate
and an insertion is impossible.

This completes the proof of our result: from any pseudoline arrangement corresponding
to our constructed matroid we can immediately read off an admissible assignment of truth
values for the encoded instance of Problem 2.2. Conversely, every admissible assignment
of truth values corresponds to a possible pseudoline arrangement that has the same non-
bases as our matroid. It is straightforward to check that the translation from the instance
of Problem 2.2 to the matroid can be carried out in polynomial time. Thus we have
proved:

Theorem 6.1. Checking orientability of a matroid is an NP-complete problem.

Figure 9: Two “good” and one “bad” situations
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