
A DYNAMIC SETUP FOR ELEMENTARY GEOMETRY

JÜRGEN RICHTER-GEBERT AND ULRICH H. KORTENKAMP

Abstract. In this article we survey the theoretical background that is re-
quired to build a consistent and continuous setup of dynamic elementary ge-

ometry. Unlike in static elementary geometry in dynamic elementary geometry
the elements of a construction are allowed to move around as long as the geo-
metric constraints intended by the construction are not violated. A typical
problem in such a scenario is to resolve ambiguous situations that arise from
geometric operations like intersecting a circle and a line. After introducing a
formal framework for dealing with dynamic geometric constructions, we will
demonstrate that a suitable resolution of these ambiguities requires the con-
sideration of complex projective spaces. We will discuss several aspects where
one can benefit from such a rather general approach. Finally, we will sketch
some proofs that show that several fundamental algorithmic problems arising
in such a context are NP-hard or even harder.

1. Introduction

Computational Geometry very often focuses on static problems, like computing
the convex hull or Voronoi complex of a given set of points. Fundamentally new
questions arise when the objects under consideration are no longer static, but may
move around with respect to certain geometric constraints. This scenario is not
unusual, for instance every mechanism can be considered as a dynamic geometric
entity.

In this article we focus on the new areas of problems that arise from genuinely
dynamic effects. Constructions from elementary geometry play a crucial role in this
context, since they form first natural instances of non-trivial examples where it is
reasonable to study the dynamic behavior. In particular, we study computational
aspects that arise if one wants to implement a Dynamic Geometry System (DGS)
where constructions can be graphically performed by a sequence of mouse clicks.
A DGS is usually equipped with a so called “drag mode” that allows – after the
construction is completed – to pick a free element with the mouse, drag it, and
watch the movement of the entire construction following the motion according to
the geometric constraints of the construction. In the best case a DGS could be
considered as a generic visualization tool for elementary geometric configurations.
The research that led to the results presented here was motivated by the desire (and
the actual work) of implementing a concrete software package for doing dynamic
geometry on a computer [11, 12].

We start with an informal description of what we consider to be dynamic geom-
etry. Imagine any construction of elementary geometry (say a ruler and compass
construction of the midpoint of two points A and B). It consists of certain free
elements (the points A and B) and certain dependent elements whose position is
determined by the position of the free elements. Each specific picture of such a
construction is a snapshot taken from the continuum of all possible drawings for all

1



2 JÜRGEN RICHTER-GEBERT AND ULRICH H. KORTENKAMP

possible locations of the free elements. By moving the free elements we can walk
continuously from one instance of the construction to another one. During such a
walk a continuous motion of the free elements should be reflected by in a continuous
movement of the dependent elements.

One of the most fundamental problems for the “drag mode” arises when one
considers one point of an intersection of a line and a circle and allows the line to be
moved around. Since the point of intersection is not unique, a computer program
that visualizes the movement has to decide for every “discrete snapshot” which of
the two intersection points is meant. If this decision is not made correctly a “path-
jumping” of the point may occur (while the line performs just a tiny movement
the position of the intersection may suddenly jump from one possible place to the
other).

Geometric locus under the motion of
a “three bar linkage”. The use of
complex path tracing generates reli-
ably complete real branches of alge-
braic curves. The orientation heuris-
tics that are usually used by other soft-
ware can only generate partial loci.

A careful analysis of the situation shows that for a satisfactory resolution of
the problem one has to embed the configuration in an ambient complex projective
space. One even has to take monodromy effects and underlying Riemann surfaces
into account. We will later on explain how such a complexified setup can be used
to obtain continuity of the dependent elements. For this we first specify how a
desired continuous behavior of a dynamic geometry system should look like. After
this we show how embedding the entire configuration in the ambient complex space
suddenly allows to avoid degenerate or singular situations. By choosing “com-
plex detours” for the input parameters we manage to reliably follow the different
branches of ambiguous operations. The purpose of the article is to survey these
results and not to give a rigorous treatment. For a more elaborate treatment see
[6, 13].

After this survey of the theoretical background, we will investigate the algorith-
mic complexity of ”making the right decisions”. It will turn out that even in very
weak versions this problem is NP-hard. In some stronger versions it is PSPACE
hard or even undecidable. In particular one can prove that . . .

. . . it is in general PSPACE-hard to decide whether two instances of the same
construction can be continuously deformed into each other by moving the
base elements along a real path.

. . . it is NP-hard to calculate the position of the dependent elements after a
specific move of a free element.



A DYNAMIC SETUP FOR ELEMENTARY GEOMETRY 3

Detailed proves of these results can be found in [13].
Although the results of this article arose from the study of configuration spaces

of elementary geometric constructions they are naturally related to many other
setups in the area of geometry. Among those are the study of configuration spaces
of mechanical linkages [2, 5], realization spaces of oriented matroids [8, 1, 9, 16] and
polytopes [10], and the piano movers problem (with possibly many pianos) [4, 15].
Our complexity results are partially generalizations and strengthenings of known
complexity results in these areas.

Jumping elements are also a typical problem in parametric CAD. In this example (taken

from Hoffmann [3]) a hole was drilled on the boundary of a block, and one of the edges

was beveled. After moving the hole the bevel jumps from one edge to the other.

Besides the narrow context of dynamic geometry our results are relevant for
all areas where geometric objects are moved around under certain geometric con-
straints, like robotics, parametric CAD [3], virtual reality, or computational kine-
matics. Our results imply that many problems of these areas are computationally
difficult. A typical problem of this kind arises in parametric CAD and is know as
the persistent naming problem [3]. It asks for reasonable generic algorithms that
allow to maintain the so called “design intend” under the continuous change of the
controlling parameters.

2. Geometric straight line programs

We restrict ourselves to the following particularly simple scenario, which arises
in the context of interactive geometry software: a dynamic setup for elementary
geometry. Nonetheless, we want to emphasize the the underlying methods apply
also to much more general contexts.

Large parts of elementary geometry are based on the theory of ruler and compass
constructions. Such constructions are usually done by first drawing a set of “free
points” in the plane and then proceeding by adding new objects with operations
like: “join of two points”, “intersection”, “circle given by midpoint and perimeter
point”. We formalize constructions that use these operations by the concept of
geometric straight line programs.

We assume that the objects are given by suitable parameters (coordinates). A
geometric straight line program (GSP) is a sequence of program statements, where
each statement describes the position of a new elementary object. The operations
we allow are:



4 JÜRGEN RICHTER-GEBERT AND ULRICH H. KORTENKAMP

L=Join(P1,P2) Line L is the join of points P1 and P2

P=Meet(L1,L2) Point P is the meet of lines L1 and L2

C=Circle(M,P) Circle P is the a circle with center M through P

P=FreePoint Point P is at random position (x,y)
P=IntersectionCL(C,L) Point P is the intersection of line L and circle C

P=IntersectionCC(C1,C2) Point P is the intersection of the circles C1 and C2

L=AngularBisector(L1,L2) Line L is the angular bisector of the lines L1 and L2

The first three of these operations produce a unique element. The last three
operations have an intrinsic ambiguity: A line and a circle, or two circles, can
have more than one intersection; two lines have two angular bisectors. It can even
happen that a line and a circle do not intersect at all. So, in general a GSP does
not describe a unique geometric situation. One may even “get stuck” during the
execution of a GSP if an intersection does not exist. However, for a given geometric
configuration of points, lines and circles it is easy to check whether it is compatible
the definition of a given GSP. Such a configuration is then called an instance of the
GSP. It is clear that for every GSP and for each choice of concrete values for the
coordinates of the free points, there are at most finitely many possible compatible
instances, since this number is bounded by 2n where n is the number of ambiguous
choices.

A rigorous definition of GSPs and instances can be found in [6, 13]. The crucial
point for such a definition is that each statement of a GSP represents a relation
between input variables and the output variables rather than an assignment op-
eration. This allows for the necessary ambiguities to give a proper definition of
operations like the intersection of circle and a line. Let us consider this operation
a little closer. Let P ,L, C denote the spaces of points, lines and circles, respec-
tively1. The operation p = IntersectionCL(c, l) is represented by a ternary rela-
tion RIntCL ∈ (C × L) × P . A triple (c, l, p) of a circle c a line l and a point p is in
RIntCL if and only if p is an intersection of c and l. For a circle c and a line l there
may in general be two points p1 and p2 with (c, l, p1) ∈ RIntCL and (c, l, p2) ∈ RIntCL.
On a semantic level we may call c and l the input of the operation and p1 and p2

the output. To each statement of the GSP we may associate a corresponding type
(point, line or circle) of the output element. If we restrict ourselves to objects with
real coordinates a line and a circle may have no intersection at all. In other words
there may be c ∈ C and l ∈ L with {p ∈ P | (c, l, p) ∈ RIntCL} = ∅. We have to
distinguish three major kinds of relations:

• deterministic operations, where the position of the output element is uniquely
determined by the input elements (like join, and meet),

• non-deterministic operations, where there is a finite number of possible
positions for the output elements (like intersection-circle-line, intersection-
circle-circle, and angular bisector),

• the “free”-operation is a special operation to introduce free points that
underly no further restriction. Considered as a relation the operation is
simply a unary operation that admits all points RFree = P .

In the rigorous definition of GSPs furthermore care has to be taken to exclude
degenerate situations like taking the join of two coincident points. Such situations
are called non-admissible However, we neglect these technicalities here. An instance
of a GSP is an assignment of actual values to the variables of a GSP such that all

1We will later on specify the exact mathematical content of these spaces



A DYNAMIC SETUP FOR ELEMENTARY GEOMETRY 5

relations are satisfied. The type of each variable has to match the type of the
corresponding program statement.

Example: The following GSP encodes a construction of the midpoint of two
points A and B.

1: A=FreePoint;

2: B=FreePoint;

3: C=Circle(A,B);

4: D=Circle(B,A);

5: E=IntersectionCC(C,D);

6: F=IntersectionCC(C,D);

7: G=Join(A,B);

8: H=Join(E,F);

9: I=Meet(G,H);
1.0

H

G

A

B

E

F

I

C

D

The picture shows one possible instance for A = (1, 1) and B = (5, 3). In this
GSP points E and F have the same definition, namely being the intersection of the
two circles. Only for the “right” choices you will obtain an actual instance of the
GSP in which the final point is indeed the midpoint of A and B.

3. The problem of continuity

We now study a GSP in a dynamic setup. We want to model the situation that
one (or many) free elements are moved from one position to another. We specify
how a desirable behavior of the dependent elements under such a motion should
look like. (To have a more vivid image of this problem assume you constructed the
above picture with an interactive geometry program, how should the dependent
elements behave, when you move point A or point B?)

For a more formal treatment consider the coordinates of the free points parametrized
by a single parameter λ ∈ [0, 1]. For each position of the free elements we want
to single out a reasonable choice of the dependent elements. For a given GSP P

we consider only those selections of dependent elements that lead to admissible
instances of P, i.e. all elements satisfy all relations specified by the program and no
“degenerate” situation arises in the technical sense that we have not closer specified.

It is clear that the only freedom for the choice of dependent elements comes from
the ambiguities of non-deterministic operations. A desirable behavior would be the
following:

“While the free points move continuously all dependent objects move
continuously as well.” In other words: “The coordinates of all ele-
ments are continuous functions in λ.”

More formally let P be a specific GSP with n lines. Assume that the spaces P ,L
and C are equipped with a suitable topology. An instance (v1, v2 . . . , vn) of P can be
considered as an element of T1×T2×· · ·×Tn, where for all i we have Ti ∈ {P ,L, C}
according to the output type of line i in P. W.l.o.g. we may assume that the
first k operations of are the Free-operations. A continuous movement of the free
elements is given by continuous functions vi : [0, 1] → Ti for i = 1, . . . , k. Our
above requirement of continuity translates to the problem of generating continuous
functions vi : [0, 1] → Ti for i = k+1, . . . , n such that for each t ∈ [0, 1] the sequence
(v1(t), v2(t) . . . , vn(t)) is an admissible instance of P.



6 JÜRGEN RICHTER-GEBERT AND ULRICH H. KORTENKAMP

At first sight it is not clear whether this requirement is satisfiable at all (compare
[7]). In fact, all geometry systems and programs for parametric CAD that are cur-
rently available suffer from non-continuous behavior of dependent elements; while
you move a free point it may happen that parts of the construction jump from one
place to another. In particular, we must find a way to deal with the problem of
vanishing intersections.

4. Complex projective geometry

To fulfill the continuity requirements we first need to fix a topology. We first
consider the space P of all points. A first rough approach would be to identify P
with the euclidean plane. However, this would not be suitable for our requirements.
We will have to view the Euclidean plane as a subset of the projective plane. This
gives us “points at infinity” and the desired topology is induced by the topology of
the manifold structure that underlies the projective plane. In particular a point can
move to infinity and can “continuously” come back from the opposite side of the
(embedded euclidean) plane. On an algebraic level such a point may be represented
by homogeneous coordinates (x, y, z) where vectors that differ only by a scalar
multiple are identified. For finite points (i.e. those with z 6= 0) the original position
in the euclidean plane can always be recovered as (x/z, y/z).

The next and more important enlargement of the setup comes from embedding
the whole situation in complex space. For this we simply assume that the coordi-
nates of the objects may take also values in the field of complex numbers and study
complex two-dimensional projective geometry. Since every complex number can be
described by two real numbers this space has real dimension four. Nevertheless,
the Euclidean plane can still be found as a substructure of this space.

Compared to the real setup complex calculations have a great advantage: Inter-
sections never (!) vanish. Even if a line and a circle do not intersect in the real
Euclidean plane, it is still reasonable to consider intersection points with complex
coordinates, since the coordinates are just solutions of suitable quadratic equations.

Roughly speaking, we identify the space P with CP
2 the complex projective

plane equipped with the natural topology. In a similar way we identify L (the
space of lines) with the corresponding dual space of CP

2. We may think of a line
given by the parameters (a, b, c) as the solution set of the equation ax+by+cz = 0.
Again the parameters may also become complex numbers and parameter vectors
that only differ by scalar multiples have to be identified.

The space C of all circles consists of all complex 4-tuples (a, b, c, d) (with scalar
multiples identified). The circle represented by the parameters (a, b, c, d) is the
solution set of the homogeneous circle equation ax2 + ay2 + bxz + cyz + dz2 = 0.

5. Moving in complex spaces

Assuming that the free points perform a continuous motion there is an easy strat-
egy of dealing with multiple intersections: Consider both intersections as individual
objects and trace their paths through complex space. As long as the intersection
points do not coincide one can easily tell them apart and (in a continuous model
of computation) trace them as individual objects.

However, at first sight there seems to be a major obstacle for making this strategy
a reasonable algorithm. Consider the simple case of intersecting a line and a circle.
Assume that the circle is at a fixed position and that the line is moved from a



A DYNAMIC SETUP FOR ELEMENTARY GEOMETRY 7

position at which the two objects intersect to a position where they do not intersect
(in real space). Mark the two intersections in the start situation by a black and
a white dot, and try to trace them during the movement. Even if we consider
the vanishing intersections as still existent in complex space there will be a tangent
situation where the black and the white point do coincide. At first sight there seems
to be no reasonable choice of how to associate the colors “black” and “white” to the
complex intersection points that arise after the tangent situation. In fact, there is
no such preferable choice, since in the tangent situation the situation is completely
symmetric.

However, there is an easy way to break this symmetry by choosing a suitable
path for the movement of the line. To see this, let us consider the situation in terms
of coordinates. Let the circle be the unit circle {(x, y, z) | x2 + y2− z2 = 0} and let
the line be a horizontal line {(x, y, z) | 0x + y − 2λz = 0} parametrized by λ. As
λ moves from 0 to 1 the line moves from the x-axis to a horizontal position where
it cuts the y-axis at y = 2. The intersections of the two objects have homogeneous
coordinates (±

√
1− 4λ2, 2λ, 1) (for the purpose of an easy “de-homogenization” we

set z = 1, then the x and y entries represent then usual euclidean coordinates). We
see that for λ = 0 we have two real solutions (0,±1, 1), for λ = 1 we have two
complex solutions (2,±

√
−15, 1), and for λ = 1 the two solutions coincide.

In the Euclidean plane there can be
one, two or none intersections of a line
and a circle. In complex space these
intersections never vanish. If we can
avoid “singular situations” it is always
possible to trace the two intersections
individually.

So, how can we avoid the situations where the intersection points coincide? For
this we again take advantage of the complex setup. Let us call an instance of a GSP
non-singular if no “double intersections” occur. If we move from one non-singular
instance of a GSP to another non-singular instance of the GSP there is always a path
through complex space that avoids all singular situations. This is a consequence
of the fact that a non-constant analytic function can have no accumulation points
as its set of roots. This means that we can always take a “complex detour” that
allows us to individually trace all dependent objects of a construction. For such
paths we obtain perfect continuity.

To obtain such a detour in our example we may take a reparameterization of the
parameter λ according to λ(t) = (cos(t) + 1)/2 + i · sin(t)/2 while t moves along
the real segment [0, π] the parameter λ(t) moves from 0 to 1 along a complex semi-
circle. If we parameterize our geometric configuration with this parameter, the
start- and end-positions coincide with the start- and end-positions we previously
had. However in between the line becomes complex and so do the two points of
intersection. The important point is that along this path the two points never



8 JÜRGEN RICHTER-GEBERT AND ULRICH H. KORTENKAMP

coincide. Thus for this specific path one can clearly distinguish which of the points
in the final position has to be “black” and which has to be “white”.

In fact, for an analytic path that avoids all singularities the coordinates of the
dependent objects can be expressed by analytic functions in the input parameter.

6. From discrete samples to continuous movement

How can we imply these insights to a the implementation of a dynamic geometry
program? The crucial point here is that in a dynamic geometry program no explicit
paths of the free elements are determined by the user. If the user picks a free
point with the mouse and moves it from one position to another one gets the
impression that the path of the point makes a continuous movement. However the
only information the computer gets consists of a discrete set of mouse events that
indicate the position of the point at a sequence of sample points. Between these
sample points the program has the “freedom” to take an arbitrary path. So, as long
as the sample points correspond to non-singular situation it is always possible to
connect them by piecewise continuous (even analytic) paths that avoid all singular
situations. (One may view the entire situation as if the mouse pointer that dragges
the point escapes “off screen” to complex space between each of the sample points
of a dragging action.)

Clearly, this theoretical approach still does not give a concrete algorithm how to
perform this dragging and tracing of elements numerically. In fact, in Section 9 we
will see that this problem is indeed intrinsically hard.

7. Real benefits

The approach above may sound far too complicated to resolve the original prob-
lem of having a dynamic setup for Euclidean geometry. However, it can be proved
that as soon as we want to have continuous behavior of the dependent elements,
there is only one way to make the decisions and that this choice coincides with our
solution. Although the setup uses complex numbers we have several benefits in the
real case. Here is a list of keywords of what becomes possible under this setup:

• All derived elements behave analytically:
After an analytic path for the free elements has been chosen, the coordinates
of the dependent elements can be expressed as analytic functions in λ as
well. This is the case, since each of the primitive operations is expressible
by an analytic function (with possibly several branches). The composition
of analytic functions is again analytic.

• The solution is unique:
After the path is chosen there is no more ambiguity in the system. Each
element follows the unique path that we get by analytic continuation.

• There are no jumping elements:
After a path is chosen at least in theory no jumps of ambiguous elements
occur.

• The behavior is globally consistent:
Assume that you already have a construction that has a certain dynamic
behavior. It is not possible to enlarge this construction in such a way
that elements that constructed later perform a jump. The system makes
anticipatorily the right decisions.



A DYNAMIC SETUP FOR ELEMENTARY GEOMETRY 9

• Geometric theorems are true once-and-forever:
If a certain geometric property (that can be expressed by a polynomial
equation) holds in an arbitrary small neighborhood of the parameter space,
then it holds in the entire parameter space. This is a consequence of the fact
that an analytic function either vanishes always or only very “sporadically”.

• Randomized proving works:
The last fact can be used to test geometric relations on a randomized basis.
The system performs a random walk within the parameter space and test
whether for each choice of the parameters a conjectured relation is satisfied.
By testing a large number of samples the probability of making a wrong
statement can be kept arbitrary small.

• Self exploring Loci:
The fact that performing a full cycle around a singular situation may cause a
monodromy effect on the depending elements can be used to get animations
and loci that explore the entire configuration space by generic methods.

• We get generic tools for computational kinematics:
Besides the narrow field of dynamic geometry the same methods apply
to areas such as computational kinematics, parametric CAD and virtual
reality.

8. Randomized proving and continuity

To keep its own data structures clean, our program needs consistent information
about incidences and equalities that occur in configurations. Such incidences may
either be trivial consequences of the construction or arise from geometric theorems
like the altitudes of a triangle meeting in a point. We actually get this informa-
tion by a randomized theorem checking technique. Enough random instances of
a configuration are generated and for each of them the conjectured incidence is
checked. This is done until the program either accepts the theorem with a certain
high probability or it rejects it, if a counterexample was found.

To be really reliable, the randomized theorem checking engine needs enough (!)
random (!) examples. Again there arises a theoretical problem which originates
from ambiguities in geometric constructions. Consider the theorem stating that the
angular bisectors of the sides of a triangle meet in a point. Due to the intrinsic
ambiguity of the angular bisector operation this sentence stated as such is not true.
Consider the drawing in the picture below. It shows two valid instances of the
construction: Take three points — form the three joins of any pair of them — draw
the three angular bisectors of any pair of lines. In one of the drawings the chosen
angular bisectors meet in the other they do not.

For the theorem checking the program does a “random walk” that stays always in
the desired component of the configuration space. Staying in the correct component
during this random walk again depends on consistent and continuous behavior of
dependent elements.



10 JÜRGEN RICHTER-GEBERT AND ULRICH H. KORTENKAMP

Depending on the choices the angular bisectors of a triangle can intersect or not. Aran-
domizued proving algorithm has to generate only samples that lie in the “correct” (i.e.
intendet) component of the configuration space. This can be achieved by performing
random walks (using our continuity setup) rather than random jumps.

9. Complexity issues

Let us now briefly sketch the issues of algorithmic complexity that arise in this
context (details, proofs and further results can be found in [13, 14]). Two funda-
mental questions can be formulated that capture the main algorithmic questions of
dynamic geometry:

• Reachability problem: Given two instances of GSP. Is it possible to
move the free points such that a first instance is smoothly deformed into a
specific second one?

• Tracing problem: How can a dynamic geometry program decide after
a move what instance to draw for the new position of the free elements?

In fact it makes an essential difference whether one allows in the reachability prob-
lem only real coordinates of the elements or also complex paths. For the real version
it can be proved that (after suitable formalization) the reachability problem is in
general PSPACE-hard. It is still NP-hard if one restricts oneself to constructions
that only use join, meet, and angular bisector operations. The Tracing problem
turns out to be (at least) NP-hard. We briefly sketch how the above results can be
achieved. We first focus on the following result:

Theorem 9.1. Let P be a geometric straight line program that uses at most three
angular bisector operations and except of this only join and meet operations. Fur-
thermore let I1 and I2 be two instances of P that differ only in the choice of one
angular bisector. It is NP-hard to decide whether I1 can be moved continuously into
I2 by a real continuous motion of the free points of P.

In order to sketch a proof of this theorem we describe how a reduction of the
well known 3-SAT problem to the real reachability problem can be achieved. Our
reduction proceeds in several steps. The first step consists of transforming 3-SAT to
an algebraic setup. For this let us first formally state the 3-SAT decision problem:
3-SAT: Let B = (b1, . . . , bn) be boolean variables, and let the literals over B be

B̃ = (b1, . . . , bn,¬b1, . . . ,¬bn). Furthermore let C1, . . . , Ck be clauses formed

by disjunction of three literals from B̃. Decide whether there is a truth assignment

for B that satisfies all clauses C1, . . . , Ck simultaneously.

We may w.l.o.g. assume that each variable occurs at most once in each clause.
We give a (polynomial time) procedure that transfers each instance of 3-SAT into



A DYNAMIC SETUP FOR ELEMENTARY GEOMETRY 11

a corresponding problem concerning the roots of a multivariate polynomial. Let
b1, . . . , bn be the boolean variables and let C1, . . . , Ck be the clauses of a concrete
3-SAT S. To each bi we assign a formal variable xi. For a literal li ∈ {bi,¬bi} we
set

f(xi) :=

{
xi if li = bi,
1− xi if li = ¬bi,

Assume that for each j = 1, . . . , k the clause Cj is of the form ljr ∨ ljs ∨ ljt where

the literal lji is either bi or ¬bi. We set

Fj := f(ljr) · f(ljs) · f(ljt )

Finally we set

FS =

k∑

j=1

Fj .

By this translation for instance the 3-SAT formula (b1∨¬b3∨b5)∧(¬b2∨b4∨¬b5)
is translated to (x1 · (1− x3) · x5) + ((1− x2) · x4 · (1− x5)). The satisfying truth
assignments for S and the roots of F (S) in [0, 1]n are related by the following lemma
(here [0, 1] denotes the closed interval between 0 and 1).

Lemma 9.2. S has a satisfying truth assignment if and only if there are (x1, . . . , xn) ∈
[0, 1]n with FS(x1, . . . , xn) = 0.

Proof. If S has a concrete satisfying truth assignment (b1, . . . , bn) ∈ {True,False}n

we set

xi :=

{
0 if bi = True,
1 if bi = False,

Since every clause contains at least one true literal we the get that all f1, . . . , fk

are zero. This yields that FS is zero as well. Conversely, assume that there are
values (x1, . . . , xn) ∈ [0, 1]n such that FS(x1, . . . , xn) = 0. If the xi are chosen

in the interval [0, 1] all fj are non-negative. Thus if
∑k

j=1
fj = 0 implies that all

fj are zero. However each fi can only be zero if at least one of its factors is zero.
By setting

bi :=

{
True if xi = 0,
False if xi 6= 0,

We get a satisfying truth assignment for S. �

In the next step of our reduction we simulate the algebraic computation of the
polynomial FS by an elementary geometric construction. For this we take a line on
which we fix positions of the points 0 and 1 to define a scale of measurement. Each
point on the line corresponds then to a certain value. Multiplication and addition
of values on the line can be performed by the classical von Staudt constructions
(see picture below). (The parallelisms that occur in these construction can – after
fixing a line at infinity – entirely expressed by joins and meets.)

PSfrag replacements

x y

1

x + y

x · y
0

PSfrag replacements

x y1

x + y

x · y0



12 JÜRGEN RICHTER-GEBERT AND ULRICH H. KORTENKAMP

Von Staudt constructions for addition and multiplication.

The calculation of the polynomial FS can be decomposed into elementary arith-
metic operations. The entire construction of the geometric counterpart to FS con-
tains n free points x1, . . . , xn as input variables and one dependent point q as
output variable. If we restrict the position of the input points to the interval [0, 1]
on the computation line, we see that the point q can only be moved to the origin
if the original 3-SAT problem S was satisfiable. Restricting the input points to the
interval can be done by a small geometric gadget that uses Thales Theorem.

Finally, we construct a semi-free point that can move only on a small circle
around the output point. We can detect whether this point can circle around
the origin by an angular bisector construction. For this we join this point to the
origin and form the three times iterated angular bisector with our calculation line.
Schematically the construction is shown in the following picture.

PSfrag replacements

x1

x2

x3

x4

q 0 ?

?

Construction of a “geometric combination lock”.

The whole construction forms a kind of geometric combination lock. Opening
the locker corresponds to interchanging

We associate the following reachability problem to this construction. Is it possi-
ble from an arbitrary position of the input points to move in a real path such that
the final angular bisector is rotated by an angle of 90◦ and all free points reached
their initial position again. The whole construction forms a kind of geometric com-
bination lock. Opening the lock corresponds to achieve the desired position of the
angular bisector, but for this one has to know the correct positions of the code dials
(the input variables). Opening the lock proceeds by first moving the dials to the
right position, changing the the angular bisectors position and finally moving the
dials back to the original position.

It is not difficult to prove that the corresponding reachability question is equiva-
lent to finding a satisfying truth assignment for our original 3-SAT problem S. The
argument for this goes as follows:

• The only way that the final angular bisector can make this 90◦ turn is that
the line through the origin and through the point that is restricted to the
circle around q makes a full turn.

• This is only possible if p and the origin get so close such that the circle
around p contains the origin.

• This is only possible if the input points xi can be moved to a position that
corresponds to a satisfying truth assignment of S.



A DYNAMIC SETUP FOR ELEMENTARY GEOMETRY 13

Thus changing the position of the final angular bisector requires that we know a
satisfying truth assignment for S. This finishes our sketch of the proof of Theorem
7.1.

The other main theorem one can proof is the following.

Theorem 9.3. Given a geometric straight line Program P that contains exactly
one free point p. Furthermore given two instances A and B such that p is at position
a in A and p is at position b in B. Let p(t) : [0, 1] → [a, b] be a concrete (straight)
movement of p with p(0) = a and p(1) = b. It is NP-hard to decide whether a
continuous evaluation of P under this movement that starts at instance A ends up
at the instance B.

We very briefly sketch the idea behind the proof of this theorem. We combine
our previous construction with a kind of “automatic safe cracker” that while moving
the point p explores systematically all positions of the input variables, and for every
position tries to change the location of the angular bisector. If the original 3-SAT
instance S had a satisfying truth assignment, then the final angular bisector will
have changed its position when p reached its end situation p(1). Hence from the
final instance of the configuration we can read of whether S had a satisfying truth
assignment.

10. Remarks

More information about the software and the underlying mathematics can be
found on the Cinderella Website at http://www.cinderella.de.

References

[1] H. Günzel, The universal partition theorem for oriented matroids, Discrete Comput. Geom.,
19, (1998), 521–551.

[2] J. Hopcroft, D. Joseph & S. Whitesides, Movement problems for 2-dimensional Linkages,

SIAM J. Comput., 13, (1984), 610–629.
[3] Ch. M. Hoffmann, Solid Modeling, in: J.E. Goodman & J. O’Rourke. (eds.): Handbook

of Discrete and Computational Geometry, Lecture Notes in Mathematics 1346, CRC Press,
Boca Raton, New York, 1997, 863–880.

[4] J. Hopcroft, J.T. Schwarz & M. Sharir, On the Complexity of Motion Planning for

multiple Independent Objects; PSPACE-Hardness of the “Warehouseman’s Problem”, Intern.
J. Robotics Research 3, (1984), 76–87.

[5] D. Jordan & M. Steiner, Configuration Spaces of Mechanical Linkages, Discrete Comput.
Geom., 22, (1999), 297–315.

[6] U. Kortenkamp, Foundations of dynamic geometry, PhD-thesis, ETH Zürich, 1999,
http://www.inf.fu-berlin.de/∼kortenka/Papers/diss.pdf.

[7] J.-M. Laborde, Exploring non-euclidean geometry in a dynamic geometry environment like

Cabri-géomètre, Geometry Turned On (James King and Doris Schattschneider, eds.), MAA
Notes, no. 41, The Mathematical Association of America, 1997, 185–191.

[8] N.E. Mnëv, The universality theorems on the classification problem of configuration varieties

and convex polytopes varieties, in: Viro, O.Ya. (ed.): Topology and Geometry — Rohlin

Seminar, Lecture Notes in Mathematics 1346, Springer, Heidelberg 1988, 527–544.
[9] J. Richter-Gebert, The Universality theorems for oriented matroids and polytopes, Con-

temporary Mathematics 223, (1999), 269–292.
[10] J. Richter-Gebert, Realization Spaces of Polytopes, Lecture Notes in Mathematics 1643,

Springer, Heidelberg 1996.

[11] J. Richter-Gebert & U. Kortenkamp, Cinderella - The interactive geometry software,
Springer 1999; see also http://www.cinderella.de.

[12] J. Richter-Gebert & U. Kortenkamp, Cinderella - Die interaktive Geometriesoftware,
HEUREKA Klett, 2000.



14 JÜRGEN RICHTER-GEBERT AND ULRICH H. KORTENKAMP

[13] J. Richter-Gebert & U. Kortenkamp, Complexity issues in dynamic geometry, submitted,
manuskript available on request.

[14] J. Richter-Gebert & U. Kortenkamp, Decision complexity in dynamic geometry, to ap-
pear, manuskript available on request.

[15] J. Reif, Complexity of the movers’ problem and generalizations, Proc. 20th IEEE conf. on
Foundations of Comp. Sci., Long beach, Calif.: IEEE Computer Society, 1979, 421–427.

[16] P. Shor, Stretchability of pseudolines is NP–hard, in: Applied Geometry and Discrete Math-

ematics – The Victor Klee Festschrift (P. Gritzmann, B. Sturmfels, eds.), DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, Amer. Math. Soc., Providence, RI,
4, (1991), 531–554.

Jürgen Richter-Gebert
ETH Zürich
Inst. for Theoretical Computer Science
ETH Zentrum
CH-8092 Zürich
Switzerland

e-mail: richter@inf.ethz.ch

Ulrich H. Kortenkamp
FU Berlin
Institut für Informatik
Takustraße 9
D-14195 Berlin
Germany

e-mail: kortenkamp@inf.fu-berlin.de


