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Abstract. We are studying Runge-Kutta methods along complex paths of integration from a geometric point of
view. Thereby we derive special complex time grids, which applied to the problem of integrating a linear autonomous
system of ordinary differential equations, can be used to achieve a classical superconvergence effect. The approach is also
adapted for arbitrary ODEs. Furthermore we draw a connection from our geometric reasoning to the class of composition
methods.
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1. Introduction. Numerical integration of ODEs is in essence a well understood subject and
there is a wide range of methods that are applicable for different flavors of the problem. This paper
aims at adding some novel twist to the subject: superconvergence in the presence of certain complex
time grids. Usually numerical integration of ODEs is embedded into a context where the idealized time
variable is considered to be a continuously flowing real entity. Numerical integration methods (like for
instance variants of the Runge-Kutta approach) approximate this continuous flow by time steps of
finite resolution. Usually the finer the grid the smaller the global approximation error. Adaptive step
width algorithms aim to produce a compromise of numerical accuracy and computational effort. Near
numerically instable situations, adaptive stepwidth algorithms tend to introduce many additional grid
points. In fact, in a scenario of time flow within the real numbers there is no way to bypass these
numerically critical situations. For instance, imagine a version of the restricted two-body problem
where a planet moves around a fixed star under Newtons law of gravity. If the initial velocity of
the planet points directly towards the sun, the system will necessarily run into a singular situation.
Scenarios nearby this situation will cause numerically difficult situations. In a naive adaptive step width
approach usually many additional time steps are introduced when the planet swings closely around the
sun. A setup that allows also complex time, leaves the possibility to circumvent the singular situation
by introducing a time flow that makes a “detour” through complex values.

Our research was initially motivated by the question of applying complex detours to resolve singu-
larities in numerical integration for ODEs. The philosophy behind this approach has been successfully
applied to other situations. For instance in the field of Dynamic Geometry (see for instance [6]) the sec-
ond author successfully applied complex detours to avoid discontinuous behavior, which was known to
be a notorious problem in this field [5]. In relation to making real-time numerical simulation available
to the dynamic geometry program Cinderella, it was natural to study a complex detour approach,
as well.

Investigating complex detours for ODEs raises several interesting research questions. Besides
many interesting implementation-related issues, in particular problems arise, which are related to the
analytic character of the input and the output of the solver.

• Analytic continuation of the right side: Functions in a complex scenario require the
proper treatment of different branches (for instance for

√
. . . and log(. . .)). To avoid path

jumping (as mentioned for dynamic geometry) all function evaluations have to mimic an
analytic behavior. Thus in the evaluations of intermediate results the “correct” branches have
to be chosen. This requires the implementation of complex tracing strategies for the evaluation
of the right side of the ODE if the derivative in the ODE has several branches.
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• Complex manifold of the solution: Not only the right side of the ODE may exhibit
monodromy behavior of an analytic function. Also the solution itself may depend on the
actual path chosen for the time variable. Even if the right side of the ODE is unbranched, it
may happen that the solution at a concrete moment of time depends on the integration path,
connecting the start time and the end time. Such effects have for instance been studied in [?],
where also a connection of chaotic behavior and these monodromy effects is drawn.

Perhaps due to these reasons (the additional implementation problems and the path dependence
of the solution) in the literature there are only very few cases in which the paradigm of real time
is broken [?]. Still we are convinced that the complex setup is worth to be studied both from a
practical standpoint that asks for good approximations with small computational effort, as well as
from a structural purely mathematical standpoint. In this article we will focus on a specific situation,
which in a surprising way connects these two aspects. We will study linear ODEs, which are interesting
since they form a perhaps simplest possible scenario, in which one can apply complex detours. For
a linear right side one has just one single branch, so we can neglect the analytic continuation issues.
Surprisingly, in this case carefully chosen complex time grids can help to reduce the global integration
error by at least one order. This is what this article is about. In addition we clarify the relation of
such complex detours to classical composition methods.

The paper is organized as follows. In Section 2 we present a simplest possible scenario where the
superconvergence effects studied in this article arise. This example (namely complex detours for ẋ = x)
will serve as a motivating paradigm for our further considerations. Section 3 introduces the necessary
setup of complex time grids in relation to Runge-Kutta methods. Section 4 is the main technical
part of this article. We first deal with the problem under which condition a Runge-Kutta method
applied to a complex path yields a real terminal point (Theorem 4.3). After this we proof a main
result of this article: One can increase the order of a convergence of a Runge-Kutta method applied
to a linear ODE by choosing a suitable complex path (Corollary 4.8). We gain a lot of geometrical
insight in the structure of the path and can derive explicit criteria that have to be satisfied in order
to obtain superconvergence. These criteria are closely related to the multiplicative structure of roots
of unity in the complex plane. Section 5 draws the connection of the complex detours to composition
methods, which enables us to extend our method (at least in a certain sense) also to the case of
a non-linear right-hand side. The condition equation for superconvergence derived in Section 4 are
closely related to the classical criteria for increasing the order of composition methods. A composition
method is obtained by applying a integration method (say a Runge-Kutta integration) consecutively
in a controlled way. The sequence of these applications can again be considered as one step of a more
complicated integration method. Under certain circumstances (the above mentioned criteria) one can
increase the order of the original method by at least one. Our geometric approach allows to interpret
some of these composition methods entirely on the level of an underlying integration grid. Thus these
composition methods simply correspond to a suitably chosen complex detour. We can even iterate this
process and by this obtain (Section 5.3) composition methods of arbitrary high degree. Surprisingly,
the corresponding paths that encode the composition structure exhibit a fractal structure. Finally at
the end of Section 5, we illustrate our methods by the more sophisticated problem of computing the
Arenstorf orbit.

2. A motivating example. In this section we would like to make the reader familiar with the
subject of numerical integration along complex paths (and its benefits) in an informal but hopefully
self-explanatory way. Therefore we have chosen the simplest possible initial value problem

ẋ(t) = f
(
t, x(t)

)
, x(t0) = x0, (2.1)

where f : R2 → R, (x, t) 7→ x, and (t0, x0) := (0, 1). The corresponding analytic solution curve
ϕ : R → R, t 7→ ϕ(t), is given by the well-known exponential function ϕ(t) := et, ∀t ∈ R.

In order to compute ϕ(1), a standard approach is given by using an explicit Runge-Kutta method
(eRKM) along an equidistant decomposition of the interval [0, 1].

In contrast to the real interval [0, 1], we now study the use of complex paths connecting 0 and 1.

2



As (2.1) is a well-behaved1 initial value problem given by an autonomous linear first order differential
equation with constant coefficients, t ∈ R seems to be an unnecessary restriction. To be more precisely
we note the following.

Our initial value problem (2.1) could be written equivalently as the integral equation

x(t) = x0 +

∫ t

t0

x(s)ds = x0 +

∫

γ

x(z)dz,

where γ : [t0, t] → C, s 7→ s, is a C1-curve. As the solution ϕ has to be a holomorphic function2,
Cauchy’s well-known integral formula states, that ϕ(t) is independent of the detailed choice of γ.
Every C1-curve γ, with starting point t0 and ending point t, yields the same result for ϕ(t).

With this “analytic” picture in mind, we have a look at the behavior of the explicit Euler method
along the following complex time grid. We now take

t̃j :=
1

2

(

eiπ(1− j
n ) + 1

)

, ∀j ∈ {0, . . . , n},

as a discretization of the upper complex half circle from 0 to 1. Starting at the initial value x0 = 1,
the explicit Euler method generates n, not necessary real-valued, approximation values

x̃j ≈ ϕ(t̃j) = et̃j , ∀j ∈ {0, . . . , n}.

In the following, we compare the explicit Euler method along the mentioned complex time grid and
the equidistant composition of the interval [0, 1], given by tj := j

n
, ∀j ∈ {0, . . . , n}.

Figure 2.1 illustrates this construction in the real and complex case. Note that Figure 2.1 represents
only the image of the corresponding Euler polygons (w-plane). Thus the real-valued construction
degenerates onto the real line. Looking at the numerical results,
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Fig. 2.1. Real and complex approximation for n = 10. Thereby + and × represent the corresponding exact values of
the solution ϕ along the upper complex half circle respectively the real interval from 0 to 1. � and ⋄ are the corresponding
values of the explicit Euler method.

1For existence and uniqueness of a complex solution curve have a look at [7].
2In the case of problem (2.1), there exists a unique entire function as solution curve for every choice of (t0, x0) ∈ C2

as initial condition.
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step j xj (⋄) x̃j (�)

0 1 1

1 1.100000000 1.024471742 + 0.1545084969 · i
2 1.210000000 1.075693448 + 0.3082767551 · i
3 1.331000000 1.160581914 + 0.4613658247 · i
4 1.464100000 1.289582523 + 0.6080971485 · i
5 1.610510000 1.473952784 + 0.7336116556 · i
6 1.771561000 1.719643769 + 0.8108906981 · i
7 1.948717100 2.016924082 + 0.8017873023 · i
8 2.143588810 2.328718297 + 0.6673738888 · i
9 2.357947691 2.587124642 + 0.3901842509 · i
10 2.593742460 2.710722870− 0.0000000006 · i

we point out the following observations:
1. Both terminal points seem to be an approximation of e ≈ 2.718281828 (as expected).
2. The imaginary part of the complex terminal point seems to be zero.
3. The complex construction yields more correct digits! To be more precise, the complex terminal

point x̃10 is more than 16 times closer to e than the real terminal point x10.
Especially the last observation seems a worthwhile phenomenon to go into a deeper study of problem
(2.1) and related ones. In this article we will develop a theorem3, which explains this phenomenon
in the more general context of numerical integration of linear initial value problems with constant
coefficients by the use of explicit Runge-Kutta methods (eRKM)s along complex paths.

3. Complex flows and one-step methods. Before we confine our attention to the encountered
observations above, we have to fix the notation in this section.

Definition 3.1 (CIVP). Let d ∈ N, Ωf ⊆ C × Cd and f : Ωf → Cd, (t, x) 7→ f(t, x), be a
continuous function. Then

ẋ(t) = f
(
t, x(t)

)
, (3.1)

is called an explicit first order differential equation. A solution curve of (3.1) is a complex differentiable
function ϕ : U → Cd, t 7→ ϕ(t), with

1. Γϕ :=
{(
t, ϕ(t)

)∣
∣t ∈ U

}
⊆ Ωf and

2. ϕ̇(t) = f
(
t, ϕ(t)

)
, ∀t ∈ U ,

where U ⊆ C is an open set. (3.1) together with a point (t0, x0) ∈ Ωf , the initial condition, is called
a complex initial value problem (CIVP). A solution to a (CIVP) is a solution curve ϕ : U → Cd of
(3.1), where t0 ∈ U and

ϕ(t0) = x0.

3.1. Complex flow. Given a path γ, with γ(0) = t0 ∈ C and γ(1) = t1 ∈ C. Let us assume that
for every y ∈ N , where N is a neighborhood of x0 ∈ Cd, there exists a local solution ϕ(t0,y0) to the
(CIVP)

ẋ(t) = f
(
t, x(t)

)
, x(t0) = y0 ∈ Cd.

For every such solution ϕ(t0,y0) let us assume, that the analytic continuation of ϕ(t0,y0) along γ, denoted
by ϕ̃(t0,y0), exists. In this situation, we have a map

Φγ
f : N → Cd, y0 7→ Φγ

fy0 := ϕ̃(t0,y0)(t1).

3Compare Theorem 4.4 and Corollary 4.8.

4



Note. As Φγ
f maps the initial value y0 at t0 to the corresponding “solution value” Φγ

fy0 at t1, we
call this map the complex flow (or the evolution induced by f ). The complex flow can be interpreted
as the path-dependent function, mapping an initial value y0 to the value of the analytic continuation
ϕ̃(t0,y0) evaluated at t1.

3.2. Time grids and discrete flow. In review of the introductory example, our presented real
and complex approach took both use of discretizations of a given path γ : [0, 1] → U ⊆ C. Since C is
not equipped with an order relation, we adapt the real-valued concept of consecutive points in time
t0 ≤ . . . ≤ tn ∈ R, by the use of indexed sets

∆ :=
[
t∆0 , . . . , t

∆
n∆

]
⊂ C,

the time grids with n∆ ∈ N time steps τ∆
j := t∆j+1 − t∆j , j ∈ {0, . . . , n∆ − 1}. For every time grid ∆,

we denote

τ∆ := max
j∈{0,...,n∆−1}

∣
∣τ∆

j

∣
∣

as the maximum step size of ∆. To increase readability, we will often omit the symbol ∆ (that is, we
will identify τj = τ∆

j , n = n∆, etc.), if mathematical definiteness does not suffer.
In the example of Section 2 our attempt was to construct a corresponding grid function

x∆ : ∆ → Cd, t 7→ x∆(t),

with

x∆(t) ≈ ϕ(t), ∀t ∈ ∆,

where ϕ : U → Cd is a solution of (2.1) and ∆ ⊆ U . To do so, we have started by setting x∆(t0) := x0.
Next, we have used Euler’s idea of small “tangential” update steps to recursively compute the missing
x∆(tj)’s. To generalize this idea, we just have to replace the method for computing a new value
x∆(tj+1) from an already computed point x∆(tj). For this purpose, we introduce a function

Ψ : V → Cd, (t, s, x) 7→ Ψt,sx,

where V ⊆ C × C × Cd is an adequate set. The variables s, t and x play the role of current time,
next time and current value, respectively. At this point, one naturally assumes that Ψt,sx is defined
for every choice of (t, s, x) ∈ C × C × Cd, with (s, x) ∈ Ωf and |t− s| being sufficiently small. Under
these assumptions Ψ is often denoted as the discrete evolution in analogy to the complex flow. To put
things together, we define

x∆(tj+1) := Ψtj+1,tjx∆(tj), ∀j ∈ {0, . . . , n∆ − 1}.

For latter purposes, let

Ψ∆x0 := x∆(tn),

in analogy to Φγx0. This is the terminal point reached when the discrete evolution Ψ is developed
along the time grid ∆.

3.3. Errors. Given a time grid ∆ := [t0, . . . , tn∆ ] ⊂ C, let x∆ be a grid function generated by
a one-step method applied to (3.1). As we have already seen by the example in the previous section,
the approximation process is expected to cause grid errors εj := ε∆(tj), where j ∈ {0, . . . , n∆} and

ε∆ : ∆ → Cd, tj 7→ Φtj ,t0x0 − x∆(tj).

At this point, we define for all 0 ≤ i ≤ j ≤ n∆, Φtj ,ti := Φγ
j,i

∆ , where γj,i
∆ represents the traverse

sequentially visiting ti, . . . , tj .
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The grid errors are generated by the local inaccuracy - the consistence error - of the discrete
evolution Ψ, denoted by4

ε(t, x, τ) := Φt+τ,tx− Ψt+τ,tx.

Moreover, these local errors interact with the sensitivity of Φtj ,t0 to perturbations of x. In general
they can be damped, amplified or fortunately be extinguished throughout the one-step recursion. A
special variant of the latter case will be analyzed in what follows.

4. Theorem linear case. In this section we will reveal the secrets of the introductory example
above in the more general context given by the (CIVP)

ẋ(t) = Ax, x(t0) = x0, (4.1)

where A ∈ Cd×d, d ∈ N and (t0, x0) ∈ C × Cd. Motivated by several numerical case studies,
the effort to construct the corresponding complex flow Φt,t0x0 for an arbitrary choice of t ∈ C up to
a desired accuracy by using a Runge-Kutta method (RKM) of order p ∈ N, seems to be heavily
dependent on the detailed choice of γ - the path of integration. Pay attention to the fact, that there
is no path-dependence from the analytical point of view, as already mentioned.

For every n ∈ N, let

∆γ
n :=

[

γ(0), γ

(
1

n

)

, . . . , γ

(
n− 1

n

)

, γ(1)

]

.

In the context of (4.1), the convergence theory of one-step methods assures, that the family of grid
functions

(
x∆γ

n

)

n∈N
corresponding to the used (RKM) converges towards ϕ(t) := Φt,t0x0 with order

p for an arbitrary choice of γ, where γ(0) = t0 and γ(1) = t. In the following we will show, that for
every (RKM) of order p, there exists a path of integration γ∗, such that

ε∗n := ε
∆γ∗

n
(t) = O

(
1

np+1

)

.

Roughly speaking, the latter equation states, that there exists a path of integration γ∗, with γ∗(0) = t0
and γ∗(1) = t, such that the error at the ending point is of order p + 1 - a superconvergence effect.5

Furthermore, γ∗ can be chosen in such a way, that |γ∗| ≤ |t−t0|π
2 , which means, that γ∗ is also of

practical interest.

4.1. Effects of complex conjugation. Before we start to proof the main theorem of this section,
sketched above, we take care of the second observation6 mentioned by our introductory example:

For a certain class of complex time grids, one can ensure that the computed value at the ending
point of the time grid is real-valued. Let us therefore have a look at the detailed structure of the
discrete evolution Ψt+τ,tx of an arbitrary s-stage (eRKM) applied to problem (4.1). If Ai,j, bi ∈
C, i, j ∈ {1, . . . , s}, are the coefficients of the (eRKM), it follows that

Ψt+τ,tx = x+

s∑

i=1

biki,

where

ki := Ax+ τ

i−1∑

j=1

Ai,jAkj

4As Ψ is a discrete evolution, ε(t, x, τ) is defined for all (t, x) ∈ Ωf , if τ becomes sufficiently small.
5Note that the maximum grid error has not to be of order p + 1.
6Compare page 4.

6



is the i-th stage of the used (eRKM), i ∈ {1, . . . , s}. In fact, no matter what the coefficients of the
(eRKM) are, if applied to the linear ODE (4.1), then the evolution of one time step τ ∈ C from an
initial point x ∈ Cd can be expressed as a simple matrix multiplication Mx. Furthermore the matrix
M can be expressed as a (matrix) polynomial in τA. The precise statement is captured by the following
lemma.

Lemma 4.1. Let s ∈ N and Ψt+τ,tx be the discrete evolution of an arbitrary s-stage (eRKM) given
by the coefficients A ∈ Cs×s and b, c ∈ Cs applied to problem (4.1). Then it holds that

Ψt+τ,tx = P (τA)x, ∀x ∈ Cd,

where P is a polynomial (applied to the matrix τA) of degree s, with coefficients

p0, . . . , ps ∈ Q[A2,1,A3,1,A3,2, . . . ,As,1, . . . ,As,s−1, b1, . . . , bs].

Proof. Let us first have a look at the stages ki. By induction over i ∈ {1, . . . , s}, we will show that

ki = Pi(τA)Ax,

where Pi is a polynomial of degree i− 1 with coefficients in Q[A2,1, . . . ,Ai,1, . . . ,Ai,i−1]: Considering
the first stage of the (eRKM) we get

k1 = Ax = P1(τA)Ax,

where P1 := 1. Next, let i ∈ {2, . . . , s}. By using the induction hypothesis, it follows that

ki = Ax + τ

i−1∑

j=1

Ai,jAkj

= Ax + τ

i−1∑

j=1

Ai,jAPj(τA)Ax

=



I +
i−1∑

j=1

Ai,jτAPj(τA)



Ax.

As one can easily see, the expression in the bracket above is induced by a polynomial Pi satisfying the
desired conditions. In conclusion,

Ψt+τ,tx = x+ τ

s∑

i=1

biki =

(

I +

s∑

i=1

biPi(τA)τA

)

x

yields the desired claim. At this point we would like to make the reader aware of the fact, that there
is no problem of commutativity in the matrix polynomials above, because of AnAm = AmAn, for all
n,m ∈ N0.

Definition 4.2 (symmetric time grid). Let ∆ :=
[
t∆0 , . . . , t

∆
n∆

]
be a time grid. ∆ is called

symmetric, if there exists a permutation π ∈ Sn∆ with π2 = id, such that

τ∆
j = τ∆

π(j+1)−1,

for all j ∈ {0, . . . , n∆ − 1}.
Theorem 4.3. Let ∆γ

n be a symmetric time grid with t
∆γ

n

0 = t0 ∈ R and t
∆γ

n
n ∈ R, where n := n∆.

If xn := x∆γ
n

(

t
∆γ

n
n

)

is constructed by using an s-stage (eRKM) with corresponding coefficients A ∈ Rs×s

and b, c ∈ Rs applied to problem (4.1) along ∆γ
n, where A ∈ Rd×d, then

x0 ∈ Rd ⇒ xn ∈ Rd.
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Fig. 4.1. Two symmetric time grids ∆γ
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=
ˆ
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along γ respectively γ̃.

Proof. Let τj := τ
∆γ

n

j , for j ∈ {0, . . . , n− 1}. By using Lemma 4.1, it holds that

xn =

n−1∏

j=0

P (τjA) · x0,

where P is a polynomial of degree s with real-valued coefficients. Therefore it is sufficient to show, that
the product is in Rs×s. First we observe, that P (τA) = P (τA) and P (τA)P (σA) = P (σA)P (τA), for
all σ, τ ∈ C. Thus,

n−1∏

j=0

P (τjA) =
∏

j∈{0,...,n−1}
j+1=π(j+1)

∈R
s×s

︷ ︸︸ ︷

P (τjA) ·
∏

j∈{0,...,n−1}
j+1<π(j+1)

P (τjA)P
(
τπ(j+1)−1A

)

=
∏

j∈{0,...,n−1}
j+1=π(j+1)

P (τjA)
︸ ︷︷ ︸

∈Rs×s

·
∏

j∈{0,...,n−1}
j+1<π(j+1)

P (τjA)P (τjA)
︸ ︷︷ ︸

∈Rs×s

,

where π ∈ Sn is the corresponding permutation to the symmetric time grid ∆γ
n, with π2 = id. Pay

attention to the fact, that for every M ∈ Cs×s, it holds that MM = MM ⇒MM ∈ Rs×s.
As a result, Theorem 4.3 justifies the second observation of the introductory example in the more

general context of a (CIVP) given by an explicit linear autonomous system of first order differential
equations. There the time grid was chosen to be symmetric along a half circle of the complex plane.
Theorem 4.3 states that if we start from a real point the terminal point will be real as well.

4.2. Main theorem linear case. This section is dedicated to the third observation (accuracy
gain at the ending point) of the introductory example. Let ∆ be a time grid with starting point
t0 ∈ C and ending point t ∈ C. The main idea is, to ascribe the leading term of the error εn = ε∆(t)
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at the ending point to the step sizes τ∆
j . This is achieved by a direct (but hard-core) expansion of

Φt,t0x0 −Ψ∆x0. By doing so, we derive a condition for the step sizes τ∆
j , which enables us to increase

the order of convergence at the ending point t.
Theorem 4.4 (main theorem linear case). Let γ be a curve, with γ(0) = t0 ∈ C and γ(1) = t ∈ C.

For every n ∈ N, we define δn := τ∆γ
n

and

τj(n) := t
∆γ

n

j+1 − t
∆γ

n

j , j ∈ {0, . . . , n− 1}.

Furthermore let C ∈ R+ be a constant, such that δn ≤ C
L(γ)

n
, where L(γ) :=

∫ 1

0
|γ̇(t)| dt is the length

of γ.
If εn denotes the grid error at the ending point t ∈ C corresponding to a p-stage (eRKM) of order

p ∈ N applied to problem (4.1) along ∆γ
n, then

lim
n→∞

εn

δ
p
n

= lim
n→∞

1

δ
p
n

n−1∑

j=0

(
τj(n)

)p+1 · A
p+1e(t−t0)A

(p+ 1)!
x0. (4.2)

Proof. To increase readability we define for all n ∈ N,

ψj(n) :=

p
∑

k=0

(
τj(n)A

)k

k!
and ωj(n) :=

∞∑

k=p+1

(
τj(n)A

)k

k!
,

where j ∈ {0, . . . , n − 1}. Furthermore let E := eCL(γ)‖A‖ and xn := Ψ∆x0. To begin with our
reasoning, we have a look at

εn

δ
p
n

=
Φt,t0x0 − xn

δ
p
n

=
1

δ
p
n

[

e(t−t0)Ax0 − xn

]

=
1

δ
p
n





n−1∏

j=0

eτj(n)A −
n−1∏

j=0

ψj(n)



x0

=
1

δ
p
n





n−1∏

j=0

(
ψj(n) + ωj(n)

)
−

n−1∏

j=0

ψj(n)



 x0.

By expanding the first product, we get

εn

δ
p
n

=
1

δ
p
n






n−1∑

j=0

ωj(n)

n−1∏

l=0
l 6=j

ψl(n) + ρ(n)




x0, (4.3)

where

|ρ(n)|
δ

p
n

≤ E

δ
p
n

n∑

r=2

(
n

r

)




∞∑

k=p+1

(
CL(γ) ‖A‖

)k

k! · nk





r

≤ E

δ
p
n

n∑

r=2

n(n− 1) . . . (n− r + 1)

r! · nr
︸ ︷︷ ︸

≤1



n

∞∑

k=p+1

(
CL(γ) ‖A‖

)k

k! · nk





r

≤ E · np

|t− t0|p
n∑

r=2

(
E

np

)r

≤ E · np

|t− t0|p

(

1

1 − E
np

− 1 − E

np

)

=
E

|t− t0|p
· E2

np − E
,
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which implies limn→∞
ρ(n)
δ

p
n
x0 = 0. In the next steps we show, that we can omit the missing ψj(n)

(products) and the higher order terms of the ωj(n)’s in (4.3) as n tends to infinity. By the use of

1

δ
p
n

∥
∥
∥
∥
∥

n−1∑

j=0

ωj(n) · xn −
n−1∑

j=0

ωj(n)
n−1∏

l=0
l 6=j

ψl(n) · x0

∥
∥
∥
∥
∥

≤
n−1∑

j=0






∥
∥
∥
∥
∥

ωj(n)

δ
p
n

∥
∥
∥
∥
∥

∥
∥
∥
∥
∥
xn −

n−1∏

l=0
l 6=j

ψl(n) · x0

∥
∥
∥
∥
∥




 ≤

n−1∑

j=0






∥
∥
∥
∥
∥

ωj(n)

δ
p
n

∥
∥
∥
∥
∥

∥
∥
∥
∥
∥

n−1∏

l=0

ψl(n) −
n−1∏

l=0
l 6=j

ψl(n)

∥
∥
∥
∥
∥




 ‖x0‖

≤
n−1∑

j=0






∑∞
k=p+1

(CL(γ)‖A‖)k

k!·nk−p

|t− t0|p

∥
∥
∥
∥
∥

p
∑

k=0

(
τj(n)A

)k

k!
− I

∥
∥
∥
∥
∥

∥
∥
∥
∥
∥

n−1∏

l=0
l 6=j

ψl(n)

∥
∥
∥
∥
∥




 ‖x0‖

≤
n−1∑

j=0

E

n |t− t0|p
· E
n

· E ‖x0‖ =
E3 ‖x0‖
|t− t0|p

· 1

n
,

it holds that

lim
n→∞

εn

δ
p
n

= lim
n→∞

1

δ
p
n

n−1∑

j=0

ωj(n) · xn

= lim
n→∞




1

δ
p
n

n−1∑

j=0

(
τj(n)A

)p+1

(p+ 1)!
+

1

δ
p
n

n−1∑

j=0

∞∑

k=p+2

(
τj(n)A

)k

k!



xn.

Taking into account that
∣
∣
∣
∣
∣
∣

1

δ
p
n

n−1∑

j=0

∞∑

k=p+2

(
τj(n)A

)k

k!

∣
∣
∣
∣
∣
∣

≤ 1

|t− t0|p
n−1∑

j=0

∞∑

k=p+2

np
(
CL(γ) ‖A‖

)k

k! · nk

≤ 1

|t− t0|p · n2

n−1∑

j=0

E =
E

|t− t0|p
· 1

n

and limn→∞ xn = Φt,t0x0 = e(t−t0)Ax0, shows finally the desired claim.
Note (s-stage (eRKM)). What happens if the number of stages of the (eRKM) is larger than its

order of convergence? In the case of an s-stage (eRKM) of order p < s ∈ N (notice that p > s is not
possible in the explicit case) one can derive a theorem analogous to Theorem 4.4. We have omitted
this case for a better readability of the preceding proof. The only difference to the results above is
given by a constant C ∈ Cs×s (the p + 1 coefficient of the Runge-Kutta-polynomial P (τA)), such
that

lim
n→∞

εn

δ
p
n

= lim
n→∞

1

δ
p
n

n−1∑

j=0

(
τj(n)

)p+1 · e(t−t0)A

[
Ap+1

(p+ 1)!
− C

]

x0.

The corresponding proof is achieved by some additional estimations of higher order terms of εn

δ
p
n
,

analogously to the ones seen above.
Note (implicit (RKM)s). Analogously to the proof above, one can show, that for an s-stage implicit

(RKM) method, the structure of the error expansion (4.2) is also of the form

lim
n→∞

1

δ
p
n

n−1∑

j=0

(
τj(n)

)p+1 · C(t, t0, A)x0,

10



where C(t, t0, A) ∈ Cs×s.
Proposition 4.5. Theorem 4.4 yields

n−1∑

j=0

(
τj(n)

)p+1
= 0, ∀n ≥ N ∈ N0 ⇒ lim

n→∞

εn

δ
p
n

= lim
n→∞

Φt,t0x0 − xn

δ
p
n

= 0.

In the context of the premises of Theorem 4.4, this statement provides us a condition, which increases
the order of a (RKM) of order p ∈ N applied to (4.1) from p to p+ 1 at the terminal point.

4.3. Superconvergent paths. With Remark 4.5 in mind, our next goal is obvious: we want to
construct complex detours that provide us with superconvergence for linear ODEs. We consider an
s-stage (RKM) of convergence order p ∈ N and use it as a method to compute an approximation of
the complex flow Φt,t0x0 corresponding to problem (4.1), where t ∈ C. To achieve superconvergence
we are interested in time grid families

(
∆ =

[
t∆0 , . . . , t

∆
n∆

])

n∈N
, with

1. t0 = t∆0 and t = t∆n∆
(in other words

∑n∆−1
j=0 τ∆

j = t− t0),

2.
∑n∆−1

j=0

(
τ∆
j

)p+1
= 0 (this provides superconvergence) and

3. τ∆ ≤ D
n∆

, where D ∈ R+ (prerequisite of Theorem 4.4)
Fortunately the second criterion can be easily interpreted geometrically. This helps us to get a canonical
family of time grids for every p ∈ N:

We use the fact that all n-th roots of unity sum up to zero. Setting ζn(j) := e2πi j
n , j ∈ Z, it holds

for every α ∈ C, that

n−1∑

j=0

αζn(j) = 0.

Now we choose the time grid ∆ in a way, that (τ∆
j )p+1, j ∈ {0, . . . , n∆ − 1}, becomes such a

collection of roots of unity. As illustrated by Figure 4.2, n consecutive n(p + 1)-th roots of unity
ζn(p+1)(k), . . . , ζn(p+1)(k + (n − 1)), are transformed by complex exponentiation z 7→ zp+1 to the set
of n-th roots of unity.

zp+1

y

C Cb

ζ15(3)
b

ζ15(4)

b

ζ15(5)

b
ζ15(6)

bζ15(7)

b

ζ5(3)

b

ζ5(4)

b
ζ5(0)

b

ζ5(1)

b
ζ5(2)

Fig. 4.2. Transformation for n = 5, p = 2 and k = 3.

Lemma 4.6. Let n, p ∈ N, k ∈ Z and α ∈ C. Then it holds that

k+(n−1)
∑

j=k

(
αζn(p+1)(j)

)p+1
= 0

11



Proof. It holds that

k+(n−1)
∑

j=k

(
αζn(p+1)(j)

)p+1
= αp+1

k+(n−1)
∑

j=k

(

e
2πi j

n(p+1)

)p+1

= αp+1

k+(n−1)
∑

j=k

e2πi j
n

= αp+1
n−1∑

j=k

e2πi j
n + αp+1

k+(n−1)
∑

j=n

e2πi j
n

= αp+1
n−1∑

j=k

e2πi j
n + αp+1

k−1∑

l=0

e2πi l+n
n

= αp+1
n−1∑

j=0

e2πi j
n = 0.

In conclusion, one way to build a superconvergent time grid ∆ =
[
t∆0 , . . . , t

∆
n∆

]
is to take time

steps τ∆
j represented by n consecutive n(p + 1)-th roots of unity, which have been suitable globally

scaled and rotated by a factor α ∈ C, such that
∑n∆−1

j=0 τ∆
j = t − t0 (compare Figure 4.3). A proper

choice for this factor is

α :=
t− t0

∑k+(n−1)
j=k ζn(p+1)(j)

.

P

j
τj

y

C Cb

ζ15(3)
b

ζ15(4)

b

ζ15(5)

b
ζ15(6)

bζ15(7)

b

t0

b t1

b t2

b t3
b

t4
b

t

Fig. 4.3. Counterparts for n = 5, p = 2 and k = 3 (no global scaling and rotation).

To achieve a superconvergent family of time grids, it is easier to focus on the time steps τ∆
j as

done above. For coding and proof, we now change from the time steps to the time grid elements
t∆j , j ∈ {0, . . . , n∆}.

As one can see by example in Figure 4.3, a superconvergent choice of the time steps τ∆
j , induces that

the time grid elements t∆j are located on a circle segment, depending on the order p ∈ N of the chosen
method, connecting t0, t ∈ C. Figure 4.3 shows the situation for p = 2. There, the corresponding
time grid elements lie on a third segment of a circle. Compare this to the half circle segment of the
introductory example, where the explicit Euler method has been used (p = 1).

12



In conclusion, if the order of the method is p ∈ N, locating the time grid elements t∆j equidistantly
on a (p+ 1)-th circle segment, connecting t0, t ∈ C, provides the desired superconvergence effect. The
following theorem formalizes this idea.

Theorem 4.7. Let γ∗ := γ
p
t0,t, where

γ
p
t0,t : [0, 1] → C, x 7→ t0 − t

2i sin
(

π
p+1

)

[

eiπ( 1−2x
p+1 ) − cos

(
π

p+ 1

)]

+
t0 + t

2
. (4.4)

Furthermore, let n ∈ N and x
∆γ∗

n
be the grid function generated by a s-stage (RKM) of order p ∈ N

applied to (4.1). Then

t0 = γ∗(0) and t = γ∗(1).

Furthermore,

lim
n→∞

Φt,t0x0 − x
∆γ∗

n
(t)

δ
p
n

= 0.

Proof. By the use of Euler’s formula, a simple calculation shows that t0 = γ∗(0) and t = γ∗(1).
Moreover

τ
∆γ∗

n

j =
t0 − t

2i sin π
p+1

(

eiπ
1−2

j+1
n

p+1 − eiπ
1−2

j
n

p+1

)

, ∀j ∈ {0, . . . , n− 1},

so it is not hard to see, that
∣
∣
∣
∣
τ

∆γ∗

n

j

∣
∣
∣
∣
= constt0,t,p ·

∣
∣
∣e

− 2πi
n(p+1) − 1

∣
∣
∣ , ∀j ∈ {0, . . . , n− 1},

which implies7 δn ∈ Θ(n−1) and additionally the equidistance of the time steps τ
∆γ∗

n

j . Finally, it is
sufficient to show, that

n−1∑

j=0

(

τ
∆γ∗

n

j

)p+1

=

n−1∑

j=0

(

t
∆γ∗

n

j+1 − t
∆γ∗

n

j

)p+1

= 0.

It holds that

n−1∑

j=0

(

τ
∆γ∗

n

j

)p+1

= 0 ⇐
n−1∑

j=0

(

e−
2πi
p+1

j+1
n − e−

2πi
p+1

j
n

)p+1

= 0

⇔
n−1∑

j=0

(

e−
2πi
p+1

j
n
− 2πi

p+1
1
n − e−

2πi
p+1

j
n

)p+1

= 0

⇔
(

e−
2πi
p+1

1
n − 1

)p+1 n−1∑

j=0

e−2πi j
n

︸ ︷︷ ︸

=:(∗)

= 0.

Since (∗) is the sum of the n-th roots of unity, the desired claim follows by using the expansion given
by Theorem 4.4.

The theorem above yields immediately the following
Corollary 4.8 (superconvergence of (RKM)s). Given a Runge-Kutta method of order p ∈ N

applied to (4.1) along γ∗. The approximation at the terminal point is of order p+ 1.

7Compare to criterion 3 on page 11.
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Note. As complex conjugation do not affect the argumentation so far, the previous corollary holds
also for γ∗ := γ∗, where γ∗(t) := γ∗(t) for all t ∈ [0, 1].

5. Nonlinear case. As we have seen in the last section, Runge-Kutta methods are supercon-
vergent along certain paths of integration, if the right-hand side of the corresponding (CIVP) is linear.
Having this fact in mind, it is natural to ask whether this feature transfers to the case of an arbitrary
right-hand side f . Again our study was triggered by several numerical experiments. These experiments
suggested an adapted version of the above superconvergence statement, that also holds locally in the
nonlinear case. The main idea is to study the order of convergence not for n∆ → ∞, as in the linear
case, but for t→ t0. Let now n∆ = k be a fixed number of time steps, k ∈ N, and let h := t− t0.

We will see, that according to the integration along a time grid ∆ induced by γp
t0,t, it holds that

εn ∈ O
(

|h|p+1
)

,

in contrast to the linear case, where εn ∈ O
(

1

n
p+1
∆

)

. Roughly speaking, the superconvergence effect is

independent of |t− t0| in the linear case.
Figure 5.1 represents the situation in which a numerical integration along the discretization ∆ is

done by two Runge-Kutta iterations (k = 2). If we regard this path as a scaled and rotated copy of
a normalized8 circle segment, we can express the two time steps of ∆ as follows.

t∆1 − t∆0 = σ1h and t∆2 − t∆1 = σ2h,

where σ1 and σ2 ∈ C are the two time steps of the grid ∆
γ1
0,1

2 .

l

t∆0

l

t∆2

l

t∆1

σ1h σ2h

h

Fig. 5.1. Scaled path segment from t∆
0

to t∆
2

for p = 1, k = 2.

The general case, k > 2, behaves analogously. For l ∈ {1, . . . , k}, let σl be the l-th time step of

the normalized grid ∆
γ

p
0,1

k . Due to this fact, the corresponding scaled time steps can be expressed by
σlh, where h := t− t0.

5.1. Composition methods. Now, we draw a connection between compositions methods and
our idea of numerical integration along complex paths. Let Ψτ := Ψ0+τ,0 be the underlying au-
tonomous9 discrete evolution of the basic (RKM). If we introduce the k-term composition method

Υh := Ψσkh ◦ . . . ◦ Ψσ1h, (5.1)

the process of constructing xk := x∆

(
t∆k
)

from x0 := x∆

(
t∆0
)
, where ∆ := ∆

γ
p

0,h

k , is given by

xk = Υhx0.

8This means a (p + 1)-th circle segment γ
p
0,1 connecting 0 and 1, p ∈ N.

9This is w.l.o.g. no restriction.

14



By the superconvergence conditions of Section 4.3, our σ1, . . . , σk satisfy the two equations

σ1 + . . .+ σk = 1 and σ
p+1
1 + . . .+ σ

p+1
k = 0. (5.2)

These conditions are exactly the criteria for a classical theorem on composition methods. From [3, p.
39, Theorem 4.1] it follows, that Υh is a one-step method of convergence order at least p+ 1.

Remark. The order conditions (5.2) can be found in [3]. There, some specific composition methods
have been introduced by explicitly solving the above order conditions over the reals. [4] and [8] also
stated methods, by solving these equations over the complex numbers. In contrast to them, our starting
point has not been (5.2). The adaption of superconvergent paths γp

t0,t from the linear theorem, solves
implicitly the sufficient order conditions.

5.2. Iterations. The method given by (5.1) is called a k-term composition method. If the un-
derlying discrete evolution Ψ has got order p ∈ N, it follows that Υ is a one-step method of order at
least p+ 1. As concatenation of (RKM)s is a (RKM) again, there is no problem to regard Υ as a new
basic (RKM). Υ can again be used in the same way to construction a composition method – this time
of order at least p+2. Applying this process iteratively, it is possible to generate methods of arbitrary
order of convergence.

We start with a (RKM) Ψ of order p. Iteration, leads to methods Υh
r (parameter k omitted in this

notation), which are recursively defined by

Υh
0 := Ψh,

Υh
r+1 := Υ∆r

r ,

where ∆r := ∆
γ

p(r)
0,h

k and r ≥ 0. Υh
r is a method of order p(r). Here

p(0) := p,

p(r + 1) := p(r) + g,

where g ∈ N - the gain of order of convergence - depends on Ψ. For example, if Ψ is the discrete
evolution corresponding to a (eRKM), g = 1. If Ψ is the discrete evolution of a symmetric method,
g = 2.

With our geometric picture in mind, we now can reduce the method Υr to the basic method Ψ,
applied along a certain path. The previous recursion for Υr implies, that Υh

rx0 = ΨΓx0, where Γ is a
recursively defined time grid depending on the parameters r (depth of recursion), k (number of time
steps), p (order of Ψ) and h (global step size). We exemplify Γ for several choices of r in Figure 5.2.
As one can see, Γ becomes more and more a fractal-like structure. Furthermore the time steps of Γ
comply with the coefficients σr,j , j ∈ {1, 2} in [4, p. 5, “two term composition”] (k > 2 analogously).

Remark. As mentioned above our approach leads to the same class of methods, already discovered
in [4] and [8]. In contrast to the construction of k-term composition methods by solving the system
of order conditions (5.2), we explicitly get these methods by using the basic (RKM) along special
complex time grids. The iteration done in [4] and [8], to construct higher order methods based on a
certain (RKM), transfers (in our geometric point of view) to an application of this (RKM) along the
recursively defined time grid Γ.

5.3. A complex orbit. As a benchmark and illustration of the ideas we just introduced, we con-
sider a classical example of celestial mechanics - the restricted three body problem. The corresponding
system of differential equations

ẍ1 = x1 + 2ẋ2 − µ̂
x1 + µ

√
(
(x1 + µ)2 + x2

2

)3
− µ

x1 + µ
√
(
(x1 − µ̂)2 + x2

2

)3
,

(5.3)

ẍ2 = x2 − 2ẋ1 − µ̂
x2

√
(
(x1 + µ)2 + x2

2

)3
− µ

x2
√
(
(x1 − µ̂)2 + x2

2

)3
,
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is motivated by the motion of a satellite with respect to the gravitation potential induced by the
moon and the earth. Thereby µ := 0.012277471 is the ratio of the moon corresponding to the mass
of the total system and µ̂ := 1 − µ. Furthermore, the mass of the satellite could be neglected and
(
x1(t), x2(t)

)T
represents the vector of the satellite’s coordinates (the motion stays in a plane) in terms

of a “rotating” coordinate system, whose origin represents the gravitational center of the moon and
the earth and in which both celestial bodies stay on predefined points on the x1-axis.

Due to the american mathematician R. Arenstorf10, we know, that there exists a periodic
solution to the corresponding initial value problem given by the system (5.3) and a suitable chosen
initial value, such as

(
x1(0), x2(0), ẋ1(0), ẋ2(0)

)T
=
(
0.9940, 0.0, 0.0,−2.001585106379080

)T ∈ R4.

As illustrated by Figure 5.3, the error at the terminal point (integration from t0 = 0 to T :=
17.065216560157960, where T is the period of the corresponding exact orbit) by the use of the ex-
plicit Euler method (discrete evolution denoted by Ψ) is more than 55 times larger than with the
composition method Υ1 (k = 2). Here, both approaches have been calculated by using equidistant
time grids with the same number of time steps.

6. Outlook. We have seen, that composition methods with complex coefficients is nothing else
than numerical integration along special complex time grids using a basic (RKM). As mentioned in
the introduction, numerical integration along complex time grids involves several problems in general.

First, one has to handle monodromy effects. This means, if one uses the discussed complex
methods, one has to be aware of the fact, that branch points close to the real axis can be circulated
by the complex path of integration, which causes a switch of the calculated solution’s branch.

Moreover, one has to develop a computing framework, that enables the integrator to mimic the
concept of global analytic functions.

That all this effort is a worthwhile endeavor can be seen as follows. On the hand, the algorithmic
effort of numerically solving an initial value problem by taking a complex detour, can be reduced in a
significant way (compare [2]). Thereby the idea is to stay away from singularities. On the other hand,
the extended viewpoint given by studying differential equations over the complex numbers enriches the
structural understanding of the solution. For example, it might be possible and of practical interest to
solve boundary value problems over the complex numbers, in situations where a real-valued approach
would be ill-posed.

Acknowledgement. The authors wish to express their gratitude to Folkmar Bornemann, Juri
Suris, Oliver Junge and Ernst Hairer for their helpful remarks. Furthermore we thank Gilles Vilmart
for his support.
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[7] F. Schäfke and D. Schmidt, Gewöhnliche Differentialgleichungen - Die Grundlagen der Theorie im Reellen und
Komplexen, Springer-Verlag, Berlin, Heidelberg, New York, 1973.
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2008.

17



Fig. 5.2. Time grid Γ for r = 1, 2, 3, 4, 5 and 11 (g = h = 1 and p = k = 2).
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Fig. 5.3. The “exact” Arenstorf orbit (period T = 17.065216560157960) given by 100000 real-valued equidistant steps of Dopri5 (5-th order (eRKM), solid),
approximation by 100000 equidistant real-valued steps of the explicit Euler method Ψ (dotted) and real part of the approximation by 50000 (2 “micro” steps for each
“macro” time step, this means k = 2) time steps of the complex explicit Euler method (dashed), induced by Υ1.
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